Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30718562
PubMed Central
PMC6362236
DOI
10.1038/s41598-018-37679-0
PII: 10.1038/s41598-018-37679-0
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Clostridium beijerinckii cytologie genetika MeSH
- fermentace genetika MeSH
- fyziologický stres * genetika MeSH
- glukosa metabolismus MeSH
- kyseliny metabolismus MeSH
- mastné kyseliny metabolismus MeSH
- proteiny teplotního šoku genetika metabolismus MeSH
- regulace genové exprese u bakterií * MeSH
- rozpouštědla metabolismus MeSH
- spory bakteriální metabolismus MeSH
- transkriptom genetika MeSH
- vodík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- glukosa MeSH
- kyseliny MeSH
- mastné kyseliny MeSH
- proteiny teplotního šoku MeSH
- rozpouštědla MeSH
- vodík MeSH
Clostridium beijerinckii NRRL B-598 is a sporulating, butanol and hydrogen producing strain that utilizes carbohydrates by the acetone-butanol-ethanol (ABE) fermentative pathway. The pathway consists of two metabolic phases, acidogenesis and solventogenesis, from which the latter one can be coupled with sporulation. Thorough transcriptomic profiling during a complete life cycle and both metabolic phases completed with flow cytometry, microscopy and a metabolites analysis helped to find out key genes involved in particular cellular events. The description of genes/operons that are closely involved in metabolism or the cell cycle is a necessary condition for metabolic engineering of the strain and will be valuable for all C. beijerinckii strains and other Clostridial species. The study focused on glucose transport and catabolism, hydrogen formation, metabolic stress response, binary fission, motility/chemotaxis and sporulation, which resulted in the composition of the unique image reflecting clostridial population changes. Surprisingly, the main change in expression of individual genes was coupled with the sporulation start and not with the transition from acidogenic to solventogenic metabolism. As expected, solvents formation started at pH decrease and the accumulation of butyric and acetic acids in the cultivation medium.
Zobrazit více v PubMed
Sauer M. Industrial production of acetone and butanol by fermentation-100 years later. FEMS Microbiol. Lett. 2016;363:fnw134. doi: 10.1093/femsle/fnw134. PubMed DOI PMC
Herman NA, et al. The industrial anaerobe Clostridium acetobutylicum uses polyketides to regulate cellular differentiation. Nat. Commun. 2017;8:1514. doi: 10.1038/s41467-017-01809-5. PubMed DOI PMC
Jones AJ, Fast AG, Clupper M, Papoutsakis ET. Small and low but potent: the complex regulatory role of the small RNA SolB in solventogenesis in Clostridium acetobutylicum. Appl. Environ. Microbiol. 2018;84:e00597–18. doi: 10.1128/AEM.00597-18. PubMed DOI PMC
Sandoval-Espinola WJ, Chinn MS, Thon MR, Bruno-Bárcena JM. Evidence of mixotrophic carbon-capture by n-butanol-producer Clostridium beijerinckii. Sci. Rep. 2017;7:12759. doi: 10.1038/s41598-017-12962-8. PubMed DOI PMC
Sedlar K, et al. Complete genome sequence of Clostridium pasteurianum NRRL B-598, a non-type strain producing butanol. J. Biotechnol. 2015;214:113–114. doi: 10.1016/j.jbiotec.2015.09.022. PubMed DOI
Lipovsky J, et al. Butanol production by Clostridium pasteurianum NRRL B-598 in continuous culture compared to batch and fed-batch systems. Fuel Process. Technol. 2016;144:139–144. doi: 10.1016/j.fuproc.2015.12.020. DOI
Kolek J, Sedlar K, Provaznik I, Patakova P. Dam and Dcm methylations prevent gene transfer into Clostridium pasteurianum NRRL B-598: development of methods for electrotransformation, conjugation, and sonoporation. Biotechnol. Biofuels. 2016;9:14. doi: 10.1186/s13068-016-0436-y. PubMed DOI PMC
Sedlar K, Kolek J, Provaznik I, Patakova P. Reclassification of non-type strain Clostridium pasteurianum NRRL B-598 as Clostridium beijerinckii NRRL B-598. J. Biotechnol. 2017;244:1–3. doi: 10.1016/j.jbiotec.2017.01.003. PubMed DOI
Kolek J, et al. Comparison of expression of key sporulation, solventogenic and acetogenic genes in C. beijerinckii NRRL B-598 and its mutant strain overexpressing spo0A. Appl. Microbiol. Biotechnol. 2017;101:8279–8291. doi: 10.1007/s00253-017-8555-3. PubMed DOI
Sedlar K, et al. Transcription profiling of butanol producer Clostridium beijerinckii NRRL B-598 using RNA-Seq. BMC Genomics. 2018;19:415. doi: 10.1186/s12864-018-4805-8. PubMed DOI PMC
Wang Y, Li X, Mao Y, Blaschek HP. Single-nucleotide resolution analysis of the transcriptome structure of Clostridium beijerinckii NCIMB 8052 using RNA-Seq. BMC Genomics. 2011;12:479. doi: 10.1186/1471-2164-12-479. PubMed DOI PMC
Wang Y, Li X, Mao Y, Blaschek HP. Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq. BMC Genomics. 2012;13:102. doi: 10.1186/1471-2164-13-102. PubMed DOI PMC
Kolek J, Branska B, Drahokoupil M, Patakova P, Melzoch K. Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. FEMS Microbiol. Lett. 2016;363:fnw031. doi: 10.1093/femsle/fnw031. PubMed DOI
Branska B, Pechacova Z, Kolek J, Vasylkivska M, Patakova P. Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions. Biotechnol. Biofuels. 2018;11:99. doi: 10.1186/s13068-018-1096-x. PubMed DOI PMC
Gu Y, Jiang Y, Yang S, Jiang W. Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering. Curr. Opin. Biotechnol. 2014;29:124–131. doi: 10.1016/j.copbio.2014.04.004. PubMed DOI
Mitchell WJ. Sugar uptake by the solventogenic clostridia. World J. Microbiol. Biotechnol. 2016;32:32. doi: 10.1007/s11274-015-1981-4. PubMed DOI PMC
Shi Y, Li Y-X, Li Y-Y. Large number of phosphotransferase genes in the Clostridium beijerinckii NCIMB 8052 genome and the study on their evolution. BMC Bioinformatics. 2010;11:S9. doi: 10.1186/1471-2105-11-S11-S9. PubMed DOI PMC
Seo S-O, et al. Genomic, transcriptional, and phenotypic analysis of the glucose derepressed Clostridium beijerinckii mutant exhibiting acid crash phenotype. Biotechnol. J. 2017;12:1700182. doi: 10.1002/biot.201700182. PubMed DOI
Shi Z, Blaschek HP. Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis. Appl. Environ. Microbiol. 2008;74:7709–7714. doi: 10.1128/AEM.01948-08. PubMed DOI PMC
Lee J, Blaschek HP. Glucose Uptake in Clostridium beijerinckii NCIMB 8052 and the Solvent-Hyperproducing Mutant BA101. Appl. Environ. Microbiol. 2001;67:5025–5031. doi: 10.1128/AEM.67.11.5025-5031.2001. PubMed DOI PMC
Lee J, Mitchell WJ, Tangney M, Blaschek HP. Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101. Appl. Environ. Microbiol. 2005;71:3384–3387. doi: 10.1128/AEM.71.6.3384-3387.2005. PubMed DOI PMC
Siemerink, M. A. J. et al. Comparative genomic analysis of the central metabolism of the solventogenic species Clostridium acetobutylicum ATCC 824 and Clostridium beijerinckii NCIMB 8052. In Systems Biology of Clostridium 193–219 (Imperial College Press 2013).
Schreiber W, Durre P. Differential expression of genes within the gap operon of Clostridium acetobutylicum. Anaerobe. 2000;6:291–297. doi: 10.1006/anae.2000.0352. DOI
Alsaker KV, Papoutsakis ET. Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J. Bacteriol. 2005;187:7103–7118. doi: 10.1128/JB.187.20.7103-7118.2005. PubMed DOI PMC
Liu J, Qi H, Wang C, Wen J. Model-driven intracellular redox status modulation for increasing isobutanol production in Escherichia coli. Biotechnol. Biofuels. 2015;8:108. doi: 10.1186/s13068-015-0291-2. PubMed DOI PMC
Yoo M, et al. A quantitative system-scale characterization of the metabolism of Clostridium acetobutylicum. MBio. 2015;6:e01808–15. doi: 10.1128/mBio.01808-15. PubMed DOI PMC
Waygood EB, Sanwal BD. The control of pyruvate kinases of Escherichia coli I. Physicochemical and regulatory properties of the enzyme activated by fructose 1, 6-diphosphate. J. Biol. Chem. 1974;249:265–274. PubMed
Zhao C, Lin Z, Dong H, Zhang Y, Li Y. Reexamination of the physiological role of PykA in Escherichia coli revealed that it negatively regulates the intracellular ATP levels under anaerobic conditions. Appl. Environ. Microbiol. 2017;83:e00316–17. doi: 10.1128/AEM.00316-17. PubMed DOI PMC
Jones SW, et al. The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol. 2008;9:R114. doi: 10.1186/gb-2008-9-7-r114. PubMed DOI PMC
Poehlein A, et al. Microbial solvent formation revisited by comparative genome analysis. Biotechnol. Biofuels. 2017;10:58. doi: 10.1186/s13068-017-0742-z. PubMed DOI PMC
De Gerando HM, et al. Correction to: Genome and transcriptome of the natural isopropanol producer Clostridium beijerinckii DSM6423. BMC Genomics. 2018;19:423. doi: 10.1186/s12864-018-4799-2. PubMed DOI PMC
Buckel W, Thauer RK. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD+(Rnf) as electron acceptors: A historical review. Front. Microbiol. 2018;9:401. doi: 10.3389/fmicb.2018.00401. PubMed DOI PMC
Cai G, Jin B, Saint C, Monis P. Genetic manipulation of butyrate formation pathways in Clostridium butyricum. J. Biotechnol. 2011;155:269–274. doi: 10.1016/j.jbiotec.2011.07.004. PubMed DOI
Calusinska M, Happe T, Joris B, Wilmotte A. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. Microbiology. 2010;156:1575–1588. doi: 10.1099/mic.0.032771-0. PubMed DOI
Morra S, Arizzi M, Valetti F, Gilardi G. Oxygen stability in the new [FeFe]-hydrogenase from Clostridium beijerinckii SM10 (CbA5H) Biochemistry. 2016;55:5897–5900. doi: 10.1021/acs.biochem.6b00780. PubMed DOI
Kolek J, Patakova P, Melzoch K, Sigler K, Rezanka T. Changes in membrane plasmalogens of Clostridium pasteurianum during butanol fermentation as determined by lipidomic analysis. PLoS One. 2015;10:e0122058. doi: 10.1371/journal.pone.0122058. PubMed DOI PMC
Lepage C, Fayolle F, Hermann M, Vandecasteele JP. Changes in membrane lipid composition of Clostridium acetobutylicum during acetone-butanol fermentation: effects of solvents, growth temperature and pH. Microbiology. 1987;133:103–110. doi: 10.1099/00221287-133-1-103. DOI
Zhao Y, et al. Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 2003;69:2831–2841. doi: 10.1128/AEM.69.5.2831-2841.2003. PubMed DOI PMC
Ingram LO, Buttke TM. Effects of alcohols on micro-organisms. Adv. Microb. Physiol. 1985;25:253–300. doi: 10.1016/S0065-2911(08)60294-5. PubMed DOI
Sikkema J, de Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995;59:201–222. PubMed PMC
Bloch K, et al. Biosynthesis and metabolism of unsaturated fatty acids. Federation proceedings. 1961;20:921–927. PubMed
Scheuerbrandt G, Goldfine H, Baronowsky PE, Bloch K. A novel mechanism for the biosynthesis of unsaturated fatty acids. J. Biol. Chem. 1961;236:70–71. PubMed
Zhu L, et al. Functions of the Clostridium acetobutylicium FabF and FabZ proteins in unsaturated fatty acid biosynthesis. BMC Microbiol. 2009;9:119. doi: 10.1186/1471-2180-9-119. PubMed DOI PMC
De Mendoza, D., Schujman, G. E. & Aguilar, P. S. Biosynthesis and function of membrane lipids. In Bacillus subtilis and its closest relatives (eds Sonenshein, A., Losick, R. & Hoch, J.) 43–55 (American Society of Microbiology 2002).
Tomas CA, Beamish J, Papoutsakis ET. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J. Bacteriol. 2004;186:2006–2018. doi: 10.1128/JB.186.7.2006-2018.2004. PubMed DOI PMC
Poger D, Mark AE. A ring to rule them all: The effect of cyclopropane fatty acids on the fluidity of lipid bilayers. J. Phys. Chem. B. 2015;119:5487–5495. doi: 10.1021/acs.jpcb.5b00958. PubMed DOI
Grogan DW, Cronan JE. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 1997;61:429–441. PubMed PMC
Chang Y, Cronan JE. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol. Microbiol. 1999;33:249–259. doi: 10.1046/j.1365-2958.1999.01456.x. PubMed DOI
Pini C, Bernal P, Godoy P, Ramos J, Segura A. Cyclopropane fatty acids are involved in organic solvent tolerance but not in acid stress resistance in Pseudomonas putida DOT‐T1E. Microb. Biotechnol. 2009;2:253–261. doi: 10.1111/j.1751-7915.2009.00084.x. PubMed DOI PMC
Johnston NC, Goldfine H. Effects of growth temperature on fatty acid and alk-1-enyl group compositions of Veillonella parvula and Megasphaera elsdenii phospholipids. J. Bacteriol. 1982;149:567–575. PubMed PMC
Whitley D, Goldberg SP, Jordan WD. Heat shock proteins: A review of the molecular chaperones. J. Vasc. Surg. 1999;29:748–751. doi: 10.1016/S0741-5214(99)70329-0. PubMed DOI
Schumann W. The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones. 2003;8:207–217. doi: 10.1379/1466-1268(2003)008<0207:TBSHSS>2.0.CO;2. PubMed DOI PMC
Mogk A, et al. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J. 1997;16:4579–4590. doi: 10.1093/emboj/16.15.4579. PubMed DOI PMC
Mogk A, et al. Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon. J. Bacteriol. 1998;180:2895–2900. PubMed PMC
Wang Q, Venkataramanan KP, Huang H, Papoutsakis ET, Wu CH. Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress. BMC Syst. Biol. 2013;7:120. doi: 10.1186/1752-0509-7-120. PubMed DOI PMC
Zuber U, Drzewiecki K, Hecker M. Putative sigma factor SigI (YkoZ) of Bacillus subtilis is induced by heat shock. J. Bacteriol. 2001;183:1472–1475. doi: 10.1128/JB.183.4.1472-1475.2001. PubMed DOI PMC
Kim JGY, Wilson AC. Loss of σI affects heat-shock response and virulence gene expression in Bacillus anthracis. Microbiology. 2016;162:564–574. doi: 10.1099/mic.0.000236. PubMed DOI
Elsholz, A. K. W., Gerth, U. & Hecker, M. Regulation of CtsR activity in low GC, Gram+bacteria. in Advances in microbial physiology (ed. Poole, R. K.) 57, 119–144 (Elsevier 2010). PubMed
Gerth U, et al. Sequence and transcriptional analysis of clpX, a class-III heat-shock gene of Bacillus subtilis. Gene. 1996;181:77–83. doi: 10.1016/S0378-1119(96)00467-2. PubMed DOI
Mann MS, Dragovic Z, Schirrmacher G, Lutke-Eversloh T. Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. Biotechnol. Lett. 2012;34:1643–1649. doi: 10.1007/s10529-012-0951-2. PubMed DOI
Rutherford BJ, et al. Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl. Environ. Microbiol. 2010;76:1935–1945. doi: 10.1128/AEM.02323-09. PubMed DOI PMC
Patakova P, et al. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol. Adv. 2018;36:721–738. doi: 10.1016/j.biotechadv.2017.12.004. PubMed DOI
Tomas CA, Welker NE, Papoutsakis ET. Overexpression of groESL In Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl. Environ. Microbiol. 2003;69:4951–4965. doi: 10.1128/AEM.69.8.4951-4965.2003. PubMed DOI PMC
Gutierrez NA, Maddox IS. Role of chemotaxis in solvent production by Clostridium acetobutylicum. Appl. Environ. Microbiol. 1987;53:1924–1927. PubMed PMC
Piggot, P. Epigenetic switching: bacteria hedge bets about staying or moving. 20, 480–482 (2010). PubMed
Morimoto YV, Minamino T. Structure and function of the bi-directional bacterial flagellar motor. Biomolecules. 2014;4:217–234. doi: 10.3390/biom4010217. PubMed DOI PMC
Calvo, R. A. & Kearns, D. B. FlgM is secreted by the flagellar export apparatus in Bacillus subtilis. J. Bacteriol. JB-02324; 10.1128/JB.02324-14 (2014). PubMed PMC
Wilkinson DA, Chacko SJ, Venien-Bryan C, Wadhams GH, Armitage JP. Regulation of flagellum number by FliA and FlgM and role in biofilm formation by Rhodobacter sphaeroides. J. Bacteriol. 2011;193:4010–4014. doi: 10.1128/JB.00349-11. PubMed DOI PMC
Molle V, et al. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 2003;50:1683–1701. doi: 10.1046/j.1365-2958.2003.03818.x. PubMed DOI
Harris LM, Welker NE, Papoutsakis ET. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J. Bacteriol. 2002;184:3586–3597. doi: 10.1128/JB.184.13.3586-3597.2002. PubMed DOI PMC
Szurmant H, Ordal GW. Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 2004;68:301–319. doi: 10.1128/MMBR.68.2.301-319.2004. PubMed DOI PMC
Du S, Lutkenhaus J. Assembly and activation of the Escherichia coli divisome. Mol. Microbiol. 2017;105:177–187. doi: 10.1111/mmi.13696. PubMed DOI PMC
Fu X, Shih Y-L, Zhang Y, Rothfield LI. The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. Proc. Natl. Acad. Sci. 2001;98:980–985. doi: 10.1073/pnas.98.3.980. PubMed DOI PMC
Jamroskovic J, Pavlendova N, Muchova K, Wilkinson AJ, Barak I. An oscillating Min system in Bacillus subtilis influences asymmetrical septation during sporulation. Microbiology. 2012;158:1972–1981. doi: 10.1099/mic.0.059295-0. PubMed DOI PMC
Tomas CA, et al. DNA array-based transcriptional analysis of asporogenous, nonsolventogenic Clostridium acetobutylicum strains SKO1 and M5. J. Bacteriol. 2003;185:4539–4547. doi: 10.1128/JB.185.15.4539-4547.2003. PubMed DOI PMC
Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol. Rev. 1986;50:484–524. PubMed PMC
Jiao S, et al. Transcriptional analysis of degenerate strain Clostridium beijerinckii DG-8052 reveals a pleiotropic response to CaCO(3)-associated recovery of solvent production. Sci. Rep. 2016;6:38818. doi: 10.1038/srep38818. PubMed DOI PMC
Zhang Y, et al. Sigma factor regulated cellular response in a non-solvent producing Clostridium beijerinckii degenerated strain: A comparative transcriptome analysis. Front. Microbiol. 2017;8:23. doi: 10.3389/fmicb.2017.00023. PubMed DOI PMC
Valencikova R, Krascsenitsova E, Labajova N, Makroczyova J, Barak I. Clostridial DivIVA and MinD interact in the absence of Min. J. Anaerobe. 2018;50:22–31. doi: 10.1016/j.anaerobe.2018.01.013. PubMed DOI
Laloux G, Jacobs-Wagner C. How do bacteria localize proteins to the cell pole? J. Cell Sci. 2014;127:11–19. doi: 10.1242/jcs.138628. PubMed DOI PMC
Thomaides HB, Freeman M, Karoui M, El, Errington J. Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev. 2001;15:1662–1673. doi: 10.1101/gad.197501. PubMed DOI PMC
Eswaramoorthy P, et al. Asymmetric division and differential gene expression during a bacterial developmental program requires DivIVA. PLOS Genet. 2014;10:e1004526. doi: 10.1371/journal.pgen.1004526. PubMed DOI PMC
Ehsaan M, et al. Mutant generation by allelic exchange and genome resequencing of the biobutanol organism Clostridium acetobutylicum ATCC 824. Biotechnol. Biofuels. 2016;9:4. doi: 10.1186/s13068-015-0410-0. PubMed DOI PMC
Liu D, et al. Comparative transcriptomic analysis of Clostridium acetobutylicum biofilm and planktonic cells. J. Biotechnol. 2016;218:1–12. doi: 10.1016/j.jbiotec.2015.11.017. PubMed DOI
Pajarillo EAB, Kim SH, Lee J-Y, Valeriano VDV, Kang D-K. Quantitative proteogenomics and the reconstruction of the metabolic pathway in Lactobacillus mucosae LM1. Korean J. Food Sci. Anim. Resour. 2015;35:692–702. doi: 10.5851/kosfa.2015.35.5.692. PubMed DOI PMC
Steiner E, Scott J, Minton NP, Winzer K. An agr quorum sensing system that regulates granulose formation and sporulation in Clostridium acetobutylicum. Appl. Environ. Microbiol. 2012;78:1113–1122. doi: 10.1128/AEM.06376-11. PubMed DOI PMC
Xue C, Zhao J, Chen L, Yang S-T, Bai F. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol. Adv. 2017;35:310–322. doi: 10.1016/j.biotechadv.2017.01.007. PubMed DOI
Asad S, Opal SM. Bench-to-bedside review: quorum sensing and the role of cell-to-cell communication during invasive bacterial infection. Crit. care. 2008;12:236. doi: 10.1186/cc7101. PubMed DOI PMC
Martin-Verstraete I, Peltier J, Dupuy B. The regulatory networks that control Clostridium difficile toxin synthesis. Toxins (Basel). 2016;8:153. doi: 10.3390/toxins8050153. PubMed DOI PMC
Al-Hinai MA, Jones SW, Papoutsakis ET. The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol. Mol. Biol. Rev. 2015;79:19–37. doi: 10.1128/MMBR.00025-14. PubMed DOI PMC
Durre P. Physiology and sporulation in Clostridium. Bact. Spore from Mol. to Syst. 2014;2:315–329.
Mearls EB, Lynd LR. The identification of four histidine kinases that influence sporulation in Clostridium thermocellum. Anaerobe. 2014;28:109–119. doi: 10.1016/j.anaerobe.2014.06.004. PubMed DOI
Sauer U, Treuner A, Buchholz M, Santangelo JD, Durre P. Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J. Bacteriol. 1994;176:6572–6582. doi: 10.1128/jb.176.21.6572-6582.1994. PubMed DOI PMC
Wang Y, Li X, Blaschek HP. Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052: genome-wide transcriptional analysis with RNA-Seq. Biotechnol. Biofuels. 2013;6:138. doi: 10.1186/1754-6834-6-138. PubMed DOI PMC
Paredes CJ, Alsaker KV, Papoutsakis ET. A comparative genomic view of clostridial sporulation and physiology. Nat. Rev. Microbiol. 2005;3:969–978. doi: 10.1038/nrmicro1288. PubMed DOI
Steiner E, et al. Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum. Mol. Microbiol. 2011;80:641–654. doi: 10.1111/j.1365-2958.2011.07608.x. PubMed DOI PMC
Galperin MY, et al. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ. Microbiol. 2012;14:2870–2890. doi: 10.1111/j.1462-2920.2012.02841.x. PubMed DOI PMC
Santangelo JD, Kuhn A, Treuner-Lange A, Durre P. Sporulation and time course expression of sigma-factor homologous genes in Clostridium acetobutylicum. FEMS Microbiol. Lett. 1998;161:157–164. doi: 10.1111/j.1574-6968.1998.tb12943.x. PubMed DOI
Bi, C., Jones, S. W., Hess, D. R., Tracy, B. P. & Papoutsakis, E. T. SpoIIE is necessary for asymmetric division, sporulation, and the expression of σF, σE, and σG, but does not control solvent production in Clostridium acetobutylicum. J. Bacteriol. JB-05474; 10.1128/JB.05474-11 (2011). PubMed PMC
Nocadello S, et al. Crystal structures of the SpoIID lytic transglycosylases essential for bacterial sporulation. J. Biol. Chem. 2016;291:14915–14926. doi: 10.1074/jbc.M116.729749. PubMed DOI PMC
Fimlaid KA, Jensen O, Donnelly ML, Siegrist MS, Shen A. Regulation of Clostridium difficile spore formation by the SpoIIQ and SpoIIIA proteins. PLOS Genet. 2015;11:e1005562. doi: 10.1371/journal.pgen.1005562. PubMed DOI PMC
Matsuno K, Sonenshein AL. Role of SpoVG in asymmetric septation in Bacillus subtilis. J. Bacteriol. 1999;181:3392–3401. PubMed PMC
Burke TP, Portnoy DA. SpoVG is a conserved RNA-binding protein that regulates Listeria monocytogenes lysozyme resistance, virulence, and swarming motility. MBio. 2016;7:e00240–16. doi: 10.1128/mBio.00240-16. PubMed DOI PMC
Abhyankar W, et al. Gel‐free proteomic identification of the Bacillus subtilis insoluble spore coat protein fraction. Proteomics. 2011;11:4541–4550. doi: 10.1002/pmic.201100003. PubMed DOI
Driks A. Maximum shields: the assembly and function of the bacterial spore coat. Trends Microbiol. 2002;10:251–254. doi: 10.1016/S0966-842X(02)02373-9. PubMed DOI
Setlow P. Germination of spores of Bacillus Species: What we know and do not know. J. Bacteriol. 2014;196:1297–1305. doi: 10.1128/JB.01455-13. PubMed DOI PMC
Orsburn BC, Melville SB, Popham DL. EtfA catalyses the formation of dipicolinic acid in Clostridium perfringens. Mol. Microbiol. 2009;75:178–186. doi: 10.1111/j.1365-2958.2009.06975.x. PubMed DOI
Francis MB, Sorg JA. Dipicolinic acid release by germinating Clostridium difficile spores occurs through a mechanosensing mechanism. Msphere. 2016;1:e00306–16. doi: 10.1128/mSphere.00306-16. PubMed DOI PMC
Vasudevan P, Weaver A, Reichert ED, Linnstaedt SD, Popham DL. Spore cortex formation in Bacillus subtilis is regulated by accumulation of peptidoglycan precursors under the control of sigma K. Mol. Microbiol. 2007;65:1582–1594. doi: 10.1111/j.1365-2958.2007.05896.x. PubMed DOI
Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC
Kopylova E, Noe L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI
Quast C, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21 (2013). PubMed PMC
Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Van Der Maaten L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 2014;15:1–21.
Wickham, H. Ggplot2: Elegant graphics for data analysis. 35, (Springer 2009).
Robinson MD, McCarthy DJ, Smyth GK. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Baerends RJS, et al. Genome2D: a visualization tool for the rapid analysis of bacterial transcriptome data. Genome Biol. 2004;5:R37. doi: 10.1186/gb-2004-5-5-r37. PubMed DOI PMC
Changes in efflux pump activity of Clostridium beijerinckii throughout ABE fermentation
A transcriptional response of Clostridium beijerinckii NRRL B-598 to a butanol shock