Changes in efflux pump activity of Clostridium beijerinckii throughout ABE fermentation
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 17-00551S
Grantová Agentura České Republiky
PubMed
33409609
DOI
10.1007/s00253-020-11072-2
PII: 10.1007/s00253-020-11072-2
Knihovny.cz E-zdroje
- Klíčová slova
- ABE fermentation, Clostridium, Efflux pump, Ethidium bromide, Flow cytometry,
- MeSH
- aceton MeSH
- butanoly MeSH
- Clostridium beijerinckii * MeSH
- Clostridium MeSH
- ethanol MeSH
- fermentace MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aceton MeSH
- butanoly MeSH
- ethanol MeSH
Pumping toxic substances through a cytoplasmic membrane by protein transporters known as efflux pumps represents one bacterial mechanism involved in the stress response to the presence of toxic compounds. The active efflux might also take part in exporting low-molecular-weight alcohols produced by intrinsic cell metabolism; in the case of solventogenic clostridia, predominantly acetone, butanol and ethanol (ABE). However, little is known about this active efflux, even though some evidence exists that membrane pumps might be involved in solvent tolerance. In this study, we investigated changes in overall active efflux during ABE fermentation, employing a flow cytometric protocol adjusted for Clostridia and using ethidium bromide (EB) as a fluorescence marker for quantification of direct efflux. A fluctuation in efflux during the course of standard ABE fermentation was observed, with a maximum reached during late acidogenesis, a high efflux rate during early and mid-solventogenesis and an apparent decrease in EB efflux rate in late solventogenesis. The fluctuation in efflux activity was in accordance with transcriptomic data obtained for various membrane exporters in a former study. Surprisingly, under altered cultivation conditions, when solvent production was attenuated, and extended acidogenesis was promoted, stable low efflux activity was reached after an initial peak that appeared in the stage comparable to standard ABE fermentation. This study confirmed that efflux pump activity is not constant during ABE fermentation and suggests that undisturbed solvent production might be a trigger for activation of pumps involved in solvent efflux. KEY POINTS: • Flow cytometric assay for efflux quantification in Clostridia was established. • Efflux rate peaked in late acidogenesis and in early solventogenesis. • Impaired solventogenesis led to an overall decrease in efflux.
Zobrazit více v PubMed
Ahmed M, Borsch CM, Taylor SS, Vázquez-Laslop N, Neyfakh AA (1994) A protein that activates expression of a multidrug efflux transporter upon binding the transporter substrates. J Biol Chem 269:28506–28513 DOI
Basler G, Thompson M, Tullman-Ercek D, Keasling J (2018) A Pseudomonas putida efflux pump acts on short-chain alcohols. Biotechnol Biofuels 11:136. https://doi.org/10.1186/s13068-018-1133-9 PubMed DOI PMC
Blair JMA, Piddock LJV (2016) How to measure export via bacterial multidrug resistance efflux pumps. MBio 7. https://doi.org/10.1128/mBio.00840-16
Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50:1165–1170 DOI
Boyarskiy S, Tullman-Ercek D (2015) Getting pumped: membrane efflux transporters for enhanced biomolecule production. Curr Opin Chem Biol 28:15–19. https://doi.org/10.1016/J.CBPA.2015.05.019 PubMed DOI
Boyarskiy S, Davis López S, Kong N, Tullman-Ercek D (2016) Transcriptional feedback regulation of efflux protein expression for increased tolerance to and production of n-butanol. Metab Eng 33:130–137. https://doi.org/10.1016/j.ymben.2015.11.005 PubMed DOI
Branska B, Pechacova Z, Kolek J, Vasylkivska M, Patakova P (2018) Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions. Biotechnol Biofuels 11:99. https://doi.org/10.1186/s13068-018-1096-x PubMed DOI PMC
Branska B, Fortova L, Dvorakova M, Liu H, Patakova P, Zhang J, Melzoch M (2020) Chicken feather and wheat straw hydrolysate for direct utilization in biobutanol production. Renew Energy 145:1941–1948. https://doi.org/10.1016/j.renene.2019.07.094 DOI
Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163. https://doi.org/10.1016/S0168-6445(03)00051-2 PubMed DOI
Bui LM, Lee JY, Geraldi A, Rahman Z, Lee JH, Kim SC (2015) Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions. J Biotechnol 204:33–44. https://doi.org/10.1016/j.jbiotec.2015.03.025 DOI
Cheng C, Bao T, Yang ST (2019) Engineering Clostridium for improved solvent production: recent progress and perspective. Appl Microbiol Biotechnol 103:5549–5566 DOI
Costa SS, Viveiros M, Pomba C, Couto I (2018) Active antimicrobial efflux in Staphylococcus epidermidis: building up of resistance to fluoroquinolones and biocides in a major opportunistic pathogen. J Antimicrob Chemother 73:320–324. https://doi.org/10.1093/jac/dkx400 PubMed DOI
Delmar JA, Yu EW (2015) The AbgT family: a novel class of antimetabolite transporters. https://doi.org/10.1002/pro.2820
Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJV, Luisi BF (2018) Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 16:523–539. https://doi.org/10.1038/s41579-018-0048-6 PubMed DOI
Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487. https://doi.org/10.1038/msb.2011.21 PubMed DOI PMC
Fernandes P, Ferreira BS, Cabral JMS (2003) Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. Int J Antimicrob Agents 22:211–216. https://doi.org/10.1016/S0924-8579(03)00209-7 PubMed DOI
Fisher MA, Boyarskiy S, Yamada MR, Kong N, Bauer S, Tullman-Ercek D (2013) Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-Butanol. https://doi.org/10.1021/sb400065q
Foo JL, Jensen HM, Dahl RH, George K, Keasling JD, Lee TS, Leong S, Mukhopadhyay A (2014) Improving microbial biogasoline production in Escherichia coli using tolerance engineering. MBio 5:1932–1946. https://doi.org/10.1128/mbio.01932-14 DOI
González-Peñas H, Lu-Chau TA, Moreira MT, Lema JM (2015) Assessment of morphological changes of Clostridium acetobutylicum by flow cytometry during acetone/butanol/ethanol extractive fermentation. Biotechnol Lett 37:577–584. https://doi.org/10.1007/s10529-014-1702-3 PubMed DOI
Guan N, Liu L (2020) Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 104:51–65 DOI
Harrison ME, Dunlop MJ (2012) Synthetic feedback loop model for increasing microbial biofuel production using a biosensor. Front Microbiol 3. https://doi.org/10.3389/fmicb.2012.00360
Hassan KA, Liu Q, Henderson PJF, Paulsen IT (2015) Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. MBio 6:e01982–e01914. https://doi.org/10.1128/mBio.01982-14 PubMed DOI PMC
He X, Xue T, Ma Y, Zhang J, Wang Z, Hong J, Hui L, Qiao J, Song H, Zhang M (2019) Identification of functional butanol-tolerant genes from Escherichia coli mutants derived from error-prone PCR-based whole-genome shuffling. Biotechnol Biofuels 12:73. https://doi.org/10.1186/s13068-019-1405-z PubMed DOI PMC
Jiménez-Bonilla P, Zhang J, Wang Y, Blersch D, de-Bashan LE, Guo L, Wang Y (2020) Enhancing the tolerance of Clostridium saccharoperbutylacetonicum to lignocellulosic-biomass-derived inhibitors for efficient biobutanol production by overexpressing efflux pumps genes from Pseudomonas putida. Bioresour Technol 312:123532. https://doi.org/10.1016/j.biortech.2020.123532 PubMed DOI
Jindal S, Yang L, Day PJ, Kell DB (2019) Involvement of multiple influx and efflux transporters in the accumulation of cationic fluorescent dyes by Escherichia coli. BMC Microbiol 19:1–16. https://doi.org/10.1186/s12866-019-1561-0 DOI
Jones SW, Paredes CJ, Tracy B, Cheng N, Sillers R, Senger RS, Papoutsakis ET (2008) The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9:R114. https://doi.org/10.1186/gb-2008-9-7-r114
Jureckova K, Koscova P, Sedlar K, Kolek J, Patakova P, Provaznik I (2018) In silico prediction of genes coding efflux pumps in Clostridium beijerinckii NRRL B-598. In: Vesely M, Hrdlicka Z, Hanika J, Lubojacky J (eds) Proceedings of the 6th International Conference on Chemical Technology. Czech Society of Industrial Chemistry, Czech Republic, pp 86–90. https://www.icct.cz/AngiologyKlon-ICCT/media/system/2018/ICCT-2018-Proceedings.pdf
Kell DB, Oliver SG, De Koning HP (2014) How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. https://doi.org/10.3389/fphar.2014.00231
Kell DB, Swainston N, Pir P, Oliver SG (2015) Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends Biotechnol 33:237–246. https://doi.org/10.1016/J.TIBTECH.2015.02.001 PubMed DOI
Kieboom J, Dennis JJ, Zylstra GJ, De Bont JAM (1998) Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents. J Bacteriol 180:6769–6772 DOI
Kolek J, Patakova P, Melzoch K, Sigler K, Rezanka T (2015) Changes in membrane plasmalogens of Clostridium pasteurianum during butanol fermentation as determined by lipidomic analysis. PLoS One 10:e0122058. https://doi.org/10.1371/journal.pone.0122058 PubMed DOI PMC
Kolek J, Branska B, Drahokoupil M, Patakova P, Melzoch K (2016a) Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. FEMS Microbiol Lett 363:fnw031. https://doi.org/10.1093/femsle/fnw031 PubMed DOI
Kolek J, Sedlar K, Provaznik I, Patakova P (2016b) Dam and Dcm methylations prevent gene transfer into Clostridium pasteurianum NRRL B-598: development of methods for electrotransformation, conjugation, and sonoporation. Biotechnol Biofuels 9:14. https://doi.org/10.1186/s13068-016-0436-y PubMed DOI PMC
Kusumawardhani H, Hosseini R, de Winde JH (2018) Solvent tolerance in bacteria: fulfilling the promise of the Biotech Era? Trends Biotechnol 36:1025–1039 DOI
Liao Z, Zhang Y, Luo S, Suo Y, Zhang S, Wang J (2017) Improving cellular robustness and butanol titers of Clostridium acetobutylicum ATCC824 by introducing heat shock proteins from an extremophilic bacterium. J Biotechnol 252:1–10. https://doi.org/10.1016/j.jbiotec.2017.04.031 PubMed DOI
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8 PubMed DOI PMC
Maddox I, Steiner E, Hirsch S, Wessner S, Gutierrez N, Gapes J, Schuster K (2000) The cause of “acid-crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE-) fermentation process. J Mol Microbiol Biotechnol 2:95–100 PubMed
Matsumoto M, de Bont JAM, Isken S (2002) Isolation and characterization of the solvent-tolerant Bacillus cereus strain R1. J Biosci Bioeng 94:45–51. https://doi.org/10.1016/S1389-1723(02)80115-3 PubMed DOI
Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classif 31:274–295. https://doi.org/10.1007/s00357-014-9161-z DOI
Paixão L, Rodrigues L, Couto I, Martins M, Fernandes P, de Carvalho CCCR, Monteiro GA, Sansonetty F, Amaral L, Viveiros M (2009) Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli. J Biol Eng 3:18. https://doi.org/10.1186/1754-1611-3-18 PubMed DOI PMC
Pal S, Misra A, Banerjee S, Dam B (2020) Adaptation of ethidium bromide fluorescence assay to monitor activity of efflux pumps in bacterial pure cultures or mixed population from environmental samples. J King Saud Univ - Sci 32:939–945. https://doi.org/10.1016/j.jksus.2019.06.002 DOI
Patakova P, Kolek J, Sedlar K, Koscova P, Branska B, Kupkova K, Paulova L, Provaznik I (2018) Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol Adv 36:721–738 DOI
Patakova P, Branska B, Sedlar K, Vasylkivska M, Jureckova K, Kolek J, Koscova P, Provaznik I (2019) Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Sci Rep 9:1371. https://doi.org/10.1038/s41598-018-37679-0 PubMed DOI PMC
Patel D, Kosmidis C, Seo SM, Kaatz GW (2010) Ethidium bromide MIC screening for enhanced efflux pump gene expression or efflux activity in Staphylococcus aureus. Antimicrob Agents Chemother 54:5070–5073. https://doi.org/10.1128/AAC.01058-10 PubMed DOI PMC
Reyes LH, Almario MP, Kao KC (2011) Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One 6:e17678. https://doi.org/10.1371/journal.pone.0017678 PubMed DOI PMC
Reyes LH, Abdelaal AS, Kao KC (2013) Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors. Appl Environ Microbiol 79:5313–5320. https://doi.org/10.1128/AEM.01703-13 PubMed DOI PMC
Rodrigues L, Ramos J, Couto I, Amaral L, Viveiros M (2011) Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance. BMC Microbiol 11:35. https://doi.org/10.1186/1471-2180-11-35 PubMed DOI PMC
Rojas A, Duque E, Mosqueda G, Golden G, Hurtado A, Ramos JL, Segura A (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 183:3967–3973. https://doi.org/10.1128/JB.183.13.3967-3973.2001 PubMed DOI PMC
Schuster KC, Goodacre R, Gapes JR, Young M (2001) Degeneration of solventogenic Clostridium strains monitored by Fourier transform infrared spectroscopy of bacterial cells. J Ind Microbiol Biotechnol 27:314–321. https://doi.org/10.1038/sj.jim.7000146 PubMed DOI
Schwarz KM, Kuit W, Grimmler C, Ehrenreich A, Kengen SWM (2012) A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum - cellular behavior in adaptation to n-butanol. J Biotechnol 161:366–377. https://doi.org/10.1016/j.jbiotec.2012.03.018 PubMed DOI
Sedlar K, Koscova P, Vasylkivska M, Branska B, Kolek J, Kupkova K, Patakova P, Provaznik I (2018) Transcription profiling of butanol producer Clostridium beijerinckii NRRL B-598 using RNA-Seq. BMC Genomics 19:415. https://doi.org/10.1186/s12864-018-4805-8 PubMed DOI PMC
Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: part II. Development of specific proton flux states and numerically determined sub-systems. Biotechnol Bioeng 101:1053–1071. https://doi.org/10.1002/bit.22009 PubMed DOI PMC
Seo S-O, Janssen H, Magis A, Wang Y, Lu T, Price ND, Jin Y-S, Blaschek HP (2017) Genomic, transcriptional, and phenotypic analysis of the glucose derepressed Clostridium beijerinckii mutant exhibiting acid crash phenotype. Biotechnol J 12:1700182. https://doi.org/10.1002/biot.201700182 DOI
Shi L, Gunther S, Hubschmann T, Wick LY, Harms H, Muller S (2007) Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A 71A:592–598. https://doi.org/10.1002/cyto.a.20402 DOI
Spengler G, Kincses A, Gajdács M, Amaral L (2017) New roads leading to old destinations: efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules 22:468. https://doi.org/10.3390/molecules22030468 DOI PMC
Sun J, Deng Z, Yan A (2014) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453:254–267. https://doi.org/10.1016/J.BBRC.2014.05.090 PubMed DOI
Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965. https://doi.org/10.1128/AEM.69.8.4951-4965.2003 PubMed DOI PMC
Tracy BP, Gaida SM, Papoutsakis ET (2008) Development and application of flow-cytometric techniques for analyzing and sorting endospore-forming Clostridia. Appl Environ Microbiol 74:7497–7506. https://doi.org/10.1128/aem.01626-08 PubMed DOI PMC
Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381. https://doi.org/10.1016/J.COPBIO.2011.10.008 PubMed DOI
Turner WJ, Dunlop MJ (2015) Trade-offs in improving biofuel tolerance using combinations of efflux pumps. ACS Synth Biol 4:1056–1063. https://doi.org/10.1021/sb500307w PubMed DOI
Vasylkivska M, Patakova P (2020) Role of efflux in enhancing butanol tolerance of bacteria. J Biotechnol 320:17–27 DOI
Viveiros M, Martins A, Paixão L, Rodrigues L, Martins M, Couto I, Fähnrich E, Kern WV, Amaral L (2008) Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. Int J Antimicrob Agents 31:458–462. https://doi.org/10.1016/j.ijantimicag.2007.12.015 PubMed DOI
Wagner S, Baars L, Ytterberg AJ, Klussmeier A, Wagner CS, Nord O, Nygren, Van Wijk KJ, De Gier J-W (2007) Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 6(9):1527–1550. https://doi.org/10.1074/mcp.M600431-MCP200 PubMed DOI
Wang Y, Li X, Mao Y, Blaschek HP (2012) Genome-wide dynamic transcriptional profiling in clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq. BMC Genomics 13:102. https://doi.org/10.1186/1471-2164-13-102 PubMed DOI PMC
Yang Y, Lang N, Zhang L, Wu H, Jiang W, Gu Y (2020) A novel regulatory pathway consisting of a two-component system and an ABC-type transporter contributes to butanol tolerance in Clostridium acetobutylicum. Appl Microbiol Biotechnol 104:5011–5023. https://doi.org/10.1007/s00253-020-10555-6 PubMed DOI
Zhang Y, Dong R, Zhang M, Gao H (2018) Native efflux pumps of Escherichia coli responsible for short and medium chain alcohol. Biochem Eng J 133:149–156. https://doi.org/10.1016/J.BEJ.2018.02.009 DOI
Zhao T, Tashiro Y, Sonomoto K (2019) Smart fermentation engineering for butanol production: designed biomass and consolidated bioprocessing systems. Appl Microbiol Biotechnol 103:9359–9371 DOI