Application of fed-batch strategy to fully eliminate the negative effect of lignocellulose-derived inhibitors in ABE fermentation
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-06941S
Grantová Agentura České Republiky
23-06941S
Grantová Agentura České Republiky
23-06941S
Grantová Agentura České Republiky
23-06941S
Grantová Agentura České Republiky
PubMed
38915101
PubMed Central
PMC11197323
DOI
10.1186/s13068-024-02520-6
PII: 10.1186/s13068-024-02520-6
Knihovny.cz E-zdroje
- Klíčová slova
- ABE fermentation, Butanol, Clostridium, Fed batch, Ferulic and coumaric acid, Inhibitors, Lignocellulose hydrolysate, Salinity, Wheat straw,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Inhibitors that are released from lignocellulose biomass during its treatment represent one of the major bottlenecks hindering its massive utilization in the biotechnological production of chemicals. This study demonstrates that negative effect of inhibitors can be mitigated by proper feeding strategy. Both, crude undetoxified lignocellulose hydrolysate and complex medium supplemented with corresponding inhibitors were tested in acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii NRRL B-598 as the producer strain. RESULTS: First, it was found that the sensitivity of C. beijerinckii to inhibitors varied with different growth stages, being the most significant during the early acidogenic phase and less pronounced during late acidogenesis and early solventogenesis. Thus, a fed-batch regime with three feeding schemes was tested for toxic hydrolysate (no growth in batch mode was observed). The best results were obtained when the feeding of an otherwise toxic hydrolysate was initiated close to the metabolic switch, resulting in stable and high ABE production. Complete utilization of glucose, and up to 88% of xylose, were obtained. The most abundant inhibitors present in the alkaline wheat straw hydrolysate were ferulic and coumaric acids; both phenolic acids were efficiently detoxified by the intrinsic metabolic activity of clostridia during the early stages of cultivation as well as during the feeding period, thus preventing their accumulation. Finally, the best feeding strategy was verified using a TYA culture medium supplemented with both inhibitors, resulting in 500% increase in butanol titer over control batch cultivation in which inhibitors were added prior to inoculation. CONCLUSION: Properly timed sequential feeding effectively prevented acid-crash and enabled utilization of otherwise toxic substrate. This study unequivocally demonstrates that an appropriate biotechnological process control strategy can fully eliminate the negative effects of lignocellulose-derived inhibitors.
Zobrazit více v PubMed
Singh N, Singhania RR, Nigam PS, Dong CD, Kumar Patel A, Puri M. Global status of lignocellulosic biorefinery: Challenges and perspectives. Bioresour Technol. 2022 doi: 10.1016/j.biortech.2021.126415. PubMed DOI
Guo Y, Liu Y, Guan M, Tang H, Wang Z, Lin L, et al. Production of butanol from lignocellulosic biomass: recent advances, challenges, and prospects. RSC Adv. 2022 doi: 10.1039/D1RA09396G. PubMed DOI PMC
Branská B. Biotechnological Production of Butanol. Chem List. 2024;118(2):86–94. doi: 10.54779/chl20240086. DOI
Amiri H, Karimi K. Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives. Bioresour Technol. 2018;270:702–721. doi: 10.1016/j.biortech.2018.08.117. PubMed DOI
Jönsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6(1):16. doi: 10.1186/1754-6834-6-16. PubMed DOI PMC
Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, et al. Recent advances in the valorization of plant biomass. Biotechnol Biofuels. 2021;14(1):1–22. doi: 10.1186/s13068-021-01949-3. PubMed DOI PMC
Branska B, Fořtová L, Dvořáková M, Liu H, Patakova P, Zhang J, et al. Chicken feather and wheat straw hydrolysate for direct utilization in biobutanol production. Renew Energy. 2020;145:1941–1948. doi: 10.1016/j.renene.2019.07.094. DOI
Qureshi N, Saha BC, Liu S, Ezeji TC, Nichols NN. Cellulosic Butanol Biorefinery: Production of Biobutanol from High Solid Loadings of Sweet Sorghum Bagasse—Simultaneous Saccharification, Fermentation, and Product Recovery. Ferment. 2022;7(4):310. doi: 10.3390/fermentation7040310. DOI
Rai AK, Al Makishah NH, Wen Z, Gupta G, Pandit S, Prasad R. Recent Developments in Lignocellulosic Biofuels, a Renewable Source of Bioenergy. Ferment. 2022;8(4):161. doi: 10.3390/fermentation8040161. DOI
Holwerda EK, Worthen RS, Kothari N, Lasky RC, Davison BH, Fu C, et al. Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnol Biofuels. 2019;12(1):1–12. PubMed PMC
Jȩdrzejczyk M, Soszka E, Czapnik M, Ruppert AM, Grams J. Physical and chemical pretreatment of lignocellulosic biomass. Second Third Gener Feed Evol Biofuels. 2019;1:143–196.
Balch ML, Chamberlain MB, Worthen RS, Holwerda EK, Lynd LR. Fermentation with continuous ball milling: Effectiveness at enhancing solubilization for several cellulosic feedstocks and comparative tolerance of several microorganisms. Biomass Bioenerg. 2020;1:134.
Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;66(1):10–26. doi: 10.1007/s00253-004-1642-2. PubMed DOI
Ujor VC, Okonkwo CC. Microbial detoxification of lignocellulosic biomass hydrolysates: Biochemical and molecular aspects, challenges, exploits and future perspectives. Front Bioeng Biotechnol. 2022;22(10):1061667. doi: 10.3389/fbioe.2022.1061667. PubMed DOI PMC
Zhang Y, Ujor V, Wick M, Ezeji TC. Identification, purification and characterization of furfural transforming enzymes from Clostridium beijerinckii NCIMB 8052. Anaerobe. 2015;33:124–131. doi: 10.1016/j.anaerobe.2015.03.005. PubMed DOI
Liu J, Liu Z, Chai X, Luo Y, Guo T, Ying H. Regulation of ρ-coumaric acid tolerance in Clostridium beijerinckii by disturbing the intracellular electron transport chain. Process Biochem. 2018;68:43–52. doi: 10.1016/j.procbio.2018.02.016. DOI
Gu Y, Jiang Y, Yang S, Jiang W. Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: Pathway dissection, regulation and engineering. Curr Opinion Biotechnol. 2014 doi: 10.1016/j.copbio.2014.04.004. PubMed DOI
Capilla M, Silvestre C, Valles A, Álvarez-Hornos FJ, San-Valero P, Gabaldón C. The Influence of Sugar Composition and pH Regulation in Batch and Continuous Acetone–Butanol–Ethanol Fermentation. Ferment. 2022;8(5):226. doi: 10.3390/fermentation8050226. DOI
Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET. Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol. 2012;23(3):364–381. doi: 10.1016/j.copbio.2011.10.008. PubMed DOI
Servinsky MD, Liu S, Gerlach ES, Germane KL, Sund CJ. Fermentation of oxidized hexose derivatives by Clostridium acetobutylicum. Microb Cell Fact. 2014;13(1):139. doi: 10.1186/s12934-014-0139-7. PubMed DOI PMC
Baral NR, Shah A. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass [Internet]. Vol. 98, Applied Microbiology and Biotechnology. Springer Berlin Heidelberg; 2014 [cited 2019 Jan 17]. p. 9151–72. Available from: http://link.springer.com/10.1007/s00253-014-6106-8 PubMed
Chacón SJ, Matias G, Vieira CF dos S, Ezeji TC, Maciel Filho R, Mariano AP. Enabling butanol production from crude sugarcane bagasse hemicellulose hydrolysate by batch-feeding it into molasses fermentation. Ind Crops Prod [Internet]. 2020 Nov 1 [cited 2020 Oct 16];155:112837. Available from: 10.1016/j.indcrop.2020.112837
Qureshi N, Saha BC, Klasson KT, Liu S. High solid fed-batch butanol fermentation with simultaneous product recovery: part II-process integration. Biotechnol Prog. 2018;34(4):967–972. doi: 10.1002/btpr.2643. PubMed DOI
Branska B, Pechacova Z, Kolek J, Vasylkivska M, Patakova P. Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions. Biotechnol Biofuels. 2018;11(1):99. doi: 10.1186/s13068-018-1096-x. PubMed DOI PMC
Luo H, Zheng P, Bilal M, Xie F, Zeng Q, Zhu C, et al. Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors. Sci Total Environ. 2020;25(710):136399. doi: 10.1016/j.scitotenv.2019.136399. PubMed DOI
Liu H, Zhang J, Yuan J, Jiang X, Jiang L, Li Z, et al. Gene coexpression network analysis reveals a novel metabolic mechanism of Clostridium acetobutylicum responding to phenolic inhibitors from lignocellulosic hydrolysates. Biotechnol Biofuels. 2020;13(1):163. doi: 10.1186/s13068-020-01802-z. PubMed DOI PMC
Cho DH, Lee YJ, Um Y, Sang BI, Kim YH. Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl Microbiol Biotechnol. 2009;83(6):1035–1043. doi: 10.1007/s00253-009-1925-8. PubMed DOI
Jönsson LJ, Martín C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–112. doi: 10.1016/j.biortech.2015.10.009. PubMed DOI
Xian X, Fang L, Zhou Y, Li B, Zheng X, Liu Y, et al. Integrated bioprocess for cellulosic ethanol production from wheat straw: new ternary deep-eutectic-solvent pretreatment, enzymatic saccharification, and fermentation. Fermentation. 2022;8(8):371. doi: 10.3390/fermentation8080371. DOI
Luo H, Liu Z, Xie F, Bilal M, Peng F. Lignocellulosic biomass to biobutanol: Toxic effects and response mechanism of the combined stress of lignin-derived phenolic acids and phenolic aldehydes to Clostridium acetobutylicum. Ind Crops Prod. 2021;170:113722. doi: 10.1016/j.indcrop.2021.113722. DOI
Wang Z, Cao G, Jiang C, Song J, Zheng J, Yang Q. Butanol production from wheat straw by combining crude enzymatic hydrolysis and anaerobic fermentation using Clostridium acetobutylicum ATCC824. Energy Fuels. 2013;27(10):5900–5906. doi: 10.1021/ef4010658. DOI
Xin F, Wu YR, He J. Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol. 2014;80(15):4771–4778. doi: 10.1128/AEM.00337-14. PubMed DOI PMC
Okonkwo CC, Ujor V, Ezeji TC. Chromosomal integration of aldo-keto-reductase and short-chain dehydrogenase/reductase genes in Clostridium beijerinckii NCIMB 8052 enhanced tolerance to lignocellulose-derived microbial inhibitory compounds. Sci Rep. 2019;9(1):1–18. doi: 10.1038/s41598-019-44061-1. PubMed DOI PMC
Jiang Y, Xu B, Yan W, Liu J, Dong W, Zhou J, et al. Inhibitors tolerance analysis of Clostridium sp. strain LJ4 and its application for butanol production from corncob hydrolysate through electrochemical detoxification. Biochem Eng J. 2021;167:107891. doi: 10.1016/j.bej.2020.107891. DOI
Liao Z, Guo X, Hu J, Suo Y, Fu H, Wang J. The significance of proline on lignocellulose-derived inhibitors tolerance in Clostridium acetobutylicum ATCC 824. Bioresour Technol. 2019;1(272):561–569. doi: 10.1016/j.biortech.2018.10.038. PubMed DOI
Lin Z, Liu H, Wu J, Patakova P, Branska B, Zhang J. Effective continuous acetone–butanol–ethanol production with full utilization of cassava by immobilized symbiotic TSH06. Biotechnol Biofuels. 2019;12(1):1–11. doi: 10.1186/s13068-019-1561-1. PubMed DOI PMC
Patakova P, Branska B, Vasylkivska M, Jureckova K, Musilova J, Provaznik I, et al. Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol Adv. 2022;1(58):107889. doi: 10.1016/j.biotechadv.2021.107889. PubMed DOI
Zhang Y, Ezeji TC. Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation. Biotechnol Biofuels. 2013;6(1):66. doi: 10.1186/1754-6834-6-66. PubMed DOI PMC
Liu H, Zhang J, Yuan J, Jiang X, Jiang L, Zhao G, et al. Omics-based analyses revealed metabolic responses of Clostridium acetobutylicum to lignocellulose-derived inhibitors furfural, formic acid and phenol stress for butanol fermentation. Biotechnol Biofuels. 2019;12(1):101. doi: 10.1186/s13068-019-1440-9. PubMed DOI PMC
Ezeji T, Blaschek HP. Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour Technol. 2008;99(12):5232–5242. doi: 10.1016/j.biortech.2007.09.032. PubMed DOI
Ezeji T, Qureshi N, Blaschek HP. ARTICLE Butanol Production From Agricultural Residues: Impact of Degradation Products on Clostridium beijerinckii Growth and Butanol Fermentation. Biotechnol Bioeng. 2007;97:1460–1469. doi: 10.1002/bit.21373. PubMed DOI
Bellido C, Lucas S, González-Benito G, García-Cubero MT, Coca M. Synergistic positive effect of organic acids on the inhibitory effect of phenolic compounds on Acetone-Butanol-Ethanol (ABE) production. Food Bioprod Process. 2018;108:117–125. doi: 10.1016/j.fbp.2018.02.004. DOI
Zhang Y, Han B, Ezeji TC. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. N Biotechnol. 2012;29(3):345–351. doi: 10.1016/j.nbt.2011.09.001. PubMed DOI
Liu G, Yi Z, Li J, Yang L, Fang Y, Du A, et al. Detoxification with resin promotes the shift from acidogenesis to solventogenesis and prevents acid crash during butanol fermentation from wheat straw. Biomass Convers Biorefinery. 2023 doi: 10.1007/s13399-023-04023-0. DOI
Lee KM, Min K, Choi O, Kim KY, Woo HM, Kim Y, et al. Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation. Bioresour Technol. 2015 doi: 10.1016/j.biortech.2015.03.129. PubMed DOI
Sedlar K, Kolek J, Provaznik I, Patakova P. Reclassification of non-type strain Clostridium pasteurianum NRRL B-598 as Clostridium beijerinckii NRRL B-598. J Biotechnol. 2017;244:1–3. doi: 10.1016/j.jbiotec.2017.01.003. PubMed DOI
Vasylkivska M, Jureckova K, Branska B, Sedlar K, Kolek J, Provaznik I, et al. Transcriptional analysis of amino acid, metal ion, vitamin and carbohydrate uptake in butanol-producing Clostridium beijerinckii NRRL B-598. PLoS ONE. 2019 doi: 10.1371/journal.pone.0224560. PubMed DOI PMC
Jin Y, Fang Y, Huang M, Sun J, Huang Y, Gao X, et al. Combination of RNA sequencing and metabolite data to elucidate improved toxic compound tolerance and butanol fermentation of Clostridium acetobutylicum from wheat straw hydrolysate by supplying sodium sulfide. Bioresour Technol. 2015;198:77–86. doi: 10.1016/j.biortech.2015.08.139. PubMed DOI
Guo T, Tang Y, Yan ZQ, Fei DT, Feng LD, Jiang M, et al. Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation. J Ind Microbiol Biotechnol. 2012;39(3):401–407. doi: 10.1007/s10295-011-1017-5. PubMed DOI
Scott AF, Cresser-Brown J, Williams TL, Rizkallah PJ, Jin Y, Luk LYP, et al. Crystal Structure and Biophysical Analysis of Furfural-Detoxifying Aldehyde Reductase from Clostridium beijerinckii. Appl Environ Microbiol. 2019 doi: 10.1128/AEM.00978-19. PubMed DOI PMC
Chamkha M, Garcia JL, Labat M. Metabolism of cinnamic acids by some Clostridiales and emendation of the descriptions of Clostridium aerotolerans, Clostridium celerecrescens and Clostridium xylanolyticum. Int J Syst Evol Microbiol. 2001;51(6):2105–2111. doi: 10.1099/00207713-51-6-2105. PubMed DOI
Yao D, Dong S, Wang P, Chen T, Wang J, Yue ZB, et al. Robustness of Clostridium saccharoperbutylacetonicum for acetone-butanol-ethanol production: Effects of lignocellulosic sugars and inhibitors. Fuel. 2017;208:549–557. doi: 10.1016/j.fuel.2017.07.004. DOI
Liu J, Lin Q, Chai X, Luo Y, Guo T. Enhanced phenolic compounds tolerance response of Clostridium beijerinckii NCIMB 8052 by inactivation of Cbei_3304. 2018 Mar 3 [cited 2019 Jan 15];17(1):35. Available from: 10.1186/s12934-018-0884-0 PubMed PMC
Liu J, Guo T, Shen X, Xu J, Wang J, Wang Y, et al. Engineering Clostridium beijerinckii with the Cbei_4693 gene knockout for enhanced ferulic acid tolerance. J Biotechnol. 2016;229:53–57. doi: 10.1016/j.jbiotec.2016.04.052. PubMed DOI
Zabihi R, Mowla D, Karimi G, Setoodeh P. Examination of the impacts of salinity and culture media compositions on Clostridium acetobutylicum NRRL B-591 growth and acetone-butanol-ethanol biosynthesis. J Environ Chem Eng. 2019;7(1):102835. doi: 10.1016/j.jece.2018.102835. DOI
Zhao X, Condruz S, Chen J, Jolicoeur M. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation. Sci Rep. 2019;6(1):28307. doi: 10.1038/srep28307. PubMed DOI PMC
Qureshi N, Saha BC, Hector RE, Cotta MA. Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass Bioenergy. 2008;32(12):1353–1358. doi: 10.1016/j.biombioe.2008.04.009. DOI
Adesanya Y, Atiyeh HK, Olorunsogbon T, Khanal A, Okonkwo CC, Ujor VC, et al. Viable strategies for enhancing acetone-butanol-ethanol production from non-detoxified switchgrass hydrolysates. Bioresour Technol. 2022;1(344):126167. doi: 10.1016/j.biortech.2021.126167. PubMed DOI
Jiménez-Bonilla P, Zhang J, Wang Y, Blersch D, de-Bashan LE, Guo L, et al. Enhancing the tolerance of Clostridium saccharoperbutylacetonicum to lignocellulosic-biomass-derived inhibitors for efficient biobutanol production by overexpressing efflux pumps genes from Pseudomonas putida. Bioresour Technol. 2020;312:123532. doi: 10.1016/j.biortech.2020.123532. PubMed DOI
Suo Y, Li W, Wan L, Luo L, Liu S, Qin S, et al. Transcriptome analysis reveals reasons for the low tolerance of Clostridium tyrobutyricum to furan derivatives. Appl Microbiol Biotechnol. 2023;107(1):327–339. doi: 10.1007/s00253-022-12281-7. PubMed DOI
Branska B, Vasylkivska M, Raschmanova H, Jureckova K, Sedlar K, Provaznik I, et al. Changes in efflux pump activity of Clostridium beijerinckii throughout ABE fermentation. Appl Microbiol Biotechnol. 2021;105(2):877–889. doi: 10.1007/s00253-020-11072-2. PubMed DOI
Maddox I, Steiner E, Hirsch S, Wessner S, Gutierrez N, Gapes J, et al. The cause of “acid-crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE-) fermentation process. J Mol Microbiol Biotechnol. 2000;2(1):95–100. PubMed
Chen WH, Zeng YR. Mathematical model to appraise the inhibitory effect of phenolic compounds derived from lignin for biobutanol production. Bioresour Technol. 2018;1(261):44–51. doi: 10.1016/j.biortech.2018.04.010. PubMed DOI
Richmond C, Ujor V, Ezeji TC. Impact of syringaldehyde on the growth of Clostridium beijerinckii NCIMB 8052 and butanol production. 3 Biotech. 2012;2(2):159–167. doi: 10.1007/s13205-011-0042-4. DOI
Wang S, Zhang Y, Dong H, Mao S, Zhu Y, Wang R, et al. Formic acid triggers the “acid crash” of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Appl Environ Microbiol. 2011;77(5):1674–1680. doi: 10.1128/AEM.01835-10. PubMed DOI PMC
Su C, Zhang C, Wu Y, Zhu Q, Wen J, Wang Y, et al. Combination of pH adjusting and intermittent feeding can improve fermentative acetone-butanol-ethanol (ABE) production from steam exploded corn stover. Renew Energy. 2022 doi: 10.1016/j.renene.2022.10.008. DOI
Birgen C, Degnes KF, Markussen S, Wentzel A, Sletta H. Butanol production from lignocellulosic sugars by Clostridium beijerinckii in microbioreactors. Biotechnol Biofuels. 2021 doi: 10.1186/s13068-021-01886-1. PubMed DOI PMC
Birgen C, Markussen S, Wentzel A, Preisig HA. The Effect of Feeding Strategy on Butanol Production by Clostridium beijerinckii NCIMB 8052 using Glucose and Xylose. Chem Eng Trans. 2018;65:283–288.
Birgen C, Dürre P, Preisig HA, Wentzel A. Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. Biotechnol Biofuels. 2019;12:167. 10.1186/s13068-019-1508-6 PubMed PMC