Lignocellulose-derived inhibitors can extend residence of Clostridium beijerinckii in active solventogenic state

. 2025 Apr 09 ; 12 (1) : 31. [epub] 20250409

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40205254

Grantová podpora
23-06941S Grantová Agentura České Republiky

Odkazy

PubMed 40205254
PubMed Central PMC11982004
DOI 10.1186/s40643-025-00871-y
PII: 10.1186/s40643-025-00871-y
Knihovny.cz E-zdroje

Lignocellulose is a promising renewable resource for producing platform chemicals, such as acetone, butanol, and ethanol, via ABE fermentation by solventogenic clostridia. This study investigates the effects of common lignocellulose derived inhibitory compounds: ferulic acid, coumaric acid, and furfural on Clostridium beijerinckii. Dual-staining with propidium iodide and CFDA, combined with flow cytometry, was employed to assess physiological variability. The results showed that phenolic acid-induced stress helped maintain a higher proportion of viable cells during the production phase, enhancing solvent yields and reducing sporulation. At 0.4 g/L, ferulic and coumaric acids did not reduce cell viability; however, coumaric acid exposure led to an acid-crash profile. Conversely, a more robust inoculum exposed to both phenolic acids simultaneously exhibited effects similar to ferulic acid alone, including slower viability decline, reduced growth and sporulation, and improved solvent production. Furfural exposure at 1.5 g/L resulted in immediate viability loss in 20% of the population, though the overall decline accompanied by the highest sporulation rate occurred later than in the control. Additionally, furfural transformation was slower, suppressing butyrate production and reducing solvent production by 13%. This study suggests that delaying cell death mechanism may explain the stimulatory effects of inhibitors, advancing lignocellulose use in the future.

Zobrazit více v PubMed

Al-Hinai MA, Jones SW, Papoutsakis ET (2015) The clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol Mol Biology Rev 79(1):19–37 PubMed PMC

Ask M, Bettiga M, Mapelli V, Olsson L (2013) The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol Biofuels 6(1):22 PubMed PMC

Baral NR, Shah A (2014) Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 98(22):9151–9172 PubMed

Branska B, Pechacova Z, Kolek J, Vasylkivska M, Patakova P (2018) Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions. Biotechnol Biofuels 11(7):1261–1278 PubMed PMC

Branska B, Vasylkivska M, Raschmanova H, Jureckova K, Sedlar K, Provaznik I, Patakova P (2021) Changes in efflux pump activity of Clostridium beijerinckii throughout ABE fermentation. Appl Microbiol Biotechnol 105(2):877–889 PubMed

Branska B, Koppova K, Husakova M, Patakova P (2024) Application of fed-batch strategy to fully eliminate the negative effect of lignocellulose-derived inhibitors in ABE fermentation. Biotechnol Biofuels Bioprod 17(1):87 PubMed PMC

Chamkha M, Garcia JL, Labat M (2001) Metabolism of cinnamic acids by some Clostridiales and emendation of the descriptions of Clostridium aerotolerans, Clostridium celerecrescens and Clostridium xylanolyticum. Int J Syst Evol MicroBiol 51(6):2105–2111 PubMed

Diallo M, Kengen SWM, López-Contreras AM (2021) Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 105(9):3533–3557 PubMed PMC

Ezeji T, Blaschek HP (2008) Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour Technol 99(12):5232–5242 PubMed

Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97(6):1460–1469 PubMed

Ezeji T, Milne C, Price ND, Blaschek HP (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85(6):1697–1712 PubMed

Filannino P, Gobbetti M, De Angelis M, Di Cagno R (2014) Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria. Appl Environ Microbiol 80(24):7574–7582 PubMed PMC

González-Peñas H, Lu-Chau TA, Moreira MT, Lema JM (2015) Assessment of morphological changes of Clostridium acetobutylicum by flow cytometry during acetone/butanol/ethanol extractive fermentation. Biotechnol Lett 37(3):577–584 PubMed

Hadi SM, Shahabuddin, Rehman A (1989) Specificity of the interaction of furfural with DNA. Mutat Res Lett 225(3):101–106 PubMed

Ibraheem O, Ndimba BK (2013) Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. Int J Biol Sci 9(6):598–612 PubMed PMC

Jilani SB, Olson DG (2023) Mechanism of furfural toxicity and metabolic strategies to engineer tolerance in microbial strains. Microb Cell Fact 22(1):221 PubMed PMC

Jiménez-Bonilla P, Zhang J, Wang Y, Blersch D, de-Bashan L-E, Guo L, Wang Y (2020) Enhancing the tolerance of Clostridium Saccharoperbutylacetonicum to lignocellulosic-biomass-derived inhibitors for efficient Biobutanol production by overexpressing efflux pumps genes from Pseudomonas Putida. Bioresour Technol 312(11):1235–1242 PubMed

Jiménez-Bonilla P, Feng J, Wang S, Zhang J, Wang Y, Blersch D, de-Bashan LE, Gaillard P, Guo L, Wang Y (2021) Identification and investigation of autolysin genes in Clostridium Saccharoperbutylacetonicum strain N1-4 for enhanced Biobutanol production. Appl Environ Microbiol 87 (7) PubMed PMC

Jiménez-Bonilla P, Wang S, Whitfield T, Blersch D, Wang Y, Gonzalez-de-Bashan L-E, Luo W, Wang Y (2024) Tolerance in solventogenic clostridia for enhanced butanol production: genetic mechanisms and recent strain engineering advances. Synth Biology Eng 2(21):10007

Kolek J, Branska B, Drahokoupil M, Patakova P, Melzoch K (2016) Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. FEMS Microbiol Lett 363(6):031 PubMed

Lee S, Lee JH, Mitchell RJ (2015) Analysis of Clostridium beijerinckii NCIMB 8052’s transcriptional response to ferulic acid and its application to enhance the strain tolerance. Biotechnol Biofuels 8(1):68 PubMed PMC

Linhová M, Branská B, Patáková P, Lipovský J, Fribert P, Rychtera M, Melzoch K (2012) Rapid flow cytometric method for viability determination of solventogenic clostridia. Folia Microbiol 57(4):307–311 PubMed

Liu K, Atiyeh HK, Pardo-Planas O, Ezeji TC, Ujor V, Overton JC, Berning K, Wilkins MR, Tanner RS (2015a) Butanol production from hydrothermolysis-pretreated Switchgrass: quantification of inhibitors and detoxification of hydrolyzate. Bioresour Technol 189(21):292–301 PubMed

Liu Z, Qiao K, Tian L, Zhang Q, Liu ZY, Li FL (2015b) Spontaneous large-scale autolysis in Clostridium acetobutylicum contributes to generation of more spores. Front Microbiol 6(12):950 PubMed PMC

Liu J, Liu Z, Chai X, Luo Y, Guo T, Ying H (2018) Regulation of ρ-coumaric acid tolerance in Clostridium beijerinckii by disturbing the intracellular electron transport chain. Process Biochem 68(7):43–52

Liu H, Zhang J, Yuan J, Jiang X, Jiang L, Zhao G, Huang D, Liu B (2019) Omics-based analyses revealed metabolic responses of Clostridium acetobutylicum to lignocellulose-derived inhibitors furfural, formic acid and phenol stress for butanol fermentation. Biotechnol Biofuels 12(1):101 PubMed PMC

Liu H, Zhang J, Yuan J, Jiang X, Jiang L, Li Z, Yin Z, Du Y, Zhao G, Liu B, Huang D (2020) Gene coexpression network analysis reveals a novel metabolic mechanism of Clostridium acetobutylicum responding to phenolic inhibitors from lignocellulosic hydrolysates. Biotechnol Biofuels 13(1):163 PubMed PMC

Liu G, Yi Z, Li J, Yang L, Fang Y, Du A, He K, Zhao H, Jin Y (2024) Detoxification with resin promotes the shift from acidogenesis to solventogenesis and prevents acid crash during butanol fermentation from wheat straw. Biomass Convers Biorefinery 14(15):16857–16866

Luo H, Zheng P, Xie F, Yang R, Liu L, Han S, Zhao Y, Bilal M (2019) Co-production of solvents and organic acids in butanol fermentation by Clostridium acetobutylicum in the presence of lignin-derived phenolics. RSC Adv 9(12):6919–6927 PubMed PMC

Luo H, Zheng P, Bilal M, Xie F, Zeng Q, Zhu C, Yang R, Wang Z (2020) Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors. Sci Total Environ 710(7):1363–1399 PubMed

Luo H, Liu Z, Xie F, Bilal M, Peng F (2021) Lignocellulosic biomass to Biobutanol: toxic effects and response mechanism of the combined stress of lignin-derived phenolic acids and phenolic aldehydes to Clostridium acetobutylicum. Ind Crops Prod 170(1):1137–1142

Luo L, Wei H, Kong D, Wan L, Jiang Y, Qin S, Suo Y (2024) Efficient production of Butyric acid from lignocellulosic biomass by revealing the mechanisms of Clostridium tyrobutyricum tolerance to phenolic inhibitors. Bioresour Technol 396:1304–1327 PubMed

Oehlenschläger K, Volkmar M, Stiefelmaier J, Langsdorf A, Holtmann D, Tippkötter N, Ulber R (2024) New insights into the influence of pre-culture on robust solvent production of C. acetobutylicum. Appl Microbiol Biotechnol 108(1):143 PubMed PMC

Okonkwo CC, Ujor V, Ezeji TC (2019) Chromosomal integration of aldo-keto-reductase and short-chain dehydrogenase/reductase genes in Clostridium beijerinckii NCIMB 8052 enhanced tolerance to lignocellulose-derived microbial inhibitory compounds. Sci Rep 9(1):7634 PubMed PMC

Patakova P, Branska B, Vasylkivska M, Jureckova K, Musilova J, Provaznik I, Sedlar K (2022) Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol Adv 58(8):1078–1089 PubMed

Poehlein A, Solano JDM, Flitsch SK, Krabben P, Winzer K, Reid SJ, Jones DT, Green E, Minton NP, Daniel R, Dürre P (2017) Microbial solvent formation revisited by comparative genome analysis. Biotechnol Biofuels 10(1):58 PubMed PMC

Qureshi N, Bowman MJ, Saha BC, Hector R, Berhow MA, Cotta MA (2012) Effect of cellulosic sugar degradation products (furfural and hydroxymethyl furfural) on acetone–butanol–ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food Bioprod Process 90(3):533–540

Sedlar K, Kolek J, Provaznik I, Patakova P (2017) Reclassification of non-type strain Clostridium pasteurianum NRRL B-598 as Clostridium beijerinckii NRRL B-598. J Biotechnol 244(3):1–3 PubMed

Sedlar K, Vasylkivska M, Musilova J, Branska B, Provaznik I, Patakova P (2021) Phenotypic and genomic analysis of isopropanol and 1,3-propanediol producer Clostridium Diolis DSM 15410. Genomics 113(1):1109–1119 PubMed

Servinsky MD, Kiel JT, Dupuy NF, Sund CJ (2010) Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. Microbiology 156(11):3478–3491 PubMed

Su C, Cai D, Zhang H, Wu Y, Jiang Y, Liu Y, Zhang C, Li C, Qin P, Tan T (2024) Pilot-scale acetone-butanol-ethanol fermentation from corn Stover. Green Carbon 2(1):81–93

Suo Y, Fu H, Ren M, Yang X, Liao Z, Wang J (2018) Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing class I heat shock protein GroESL. Bioresour Technol 250(5):691–698 PubMed

Survase SA, Nimbalkar P, Jurgens G, Granström T, Chavan P, Bankar SB (2021) Efficient strategy to alleviate the inhibitory effect of Lignin-Derived compounds for enhanced butanol production. ACS Sustain Chem Eng 9(3):1172–1179

Ujor VC, Okonkwo CC (2022) Microbial detoxification of lignocellulosic biomass hydrolysates: biochemical and molecular aspects, challenges, exploits and future perspectives. Front Bioeng Biotechnol 10 (12) PubMed PMC

Ujor V, Agu CV, Gopalan V, Ezeji TC (2014) Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation. Appl Microbiol Biotechnol 98(14):6511–6521 PubMed

Ujor V, Agu CV, Gopalan V, Ezeji TC (2015) Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone–butanol–ethanol (ABE) fermentation. Appl Microbiol Biotechnol 99(8):3729–3740 PubMed

Wan L, Qin S, Wei H, Luo L, Liu S, Suo Y (2023) Enhanced tolerance of Clostridium tyrobutyricum to Furan derivatives for efficient Butyric acid production by overexpressing native transporter genes. Ind Crops Prod 206(6):117604

Wang S, Zhu Y, Zhang Y, Li Y (2012) Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity. Appl Microbiol Biotechnol 93(3):1021–1030 PubMed

Wang Y, Li X, Blaschek HP (2013) Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052: genome-wide transcriptional analysis with RNA-Seq. Biotechnol Biofuels 6(1):138 PubMed PMC

Yao D, Dong S, Wang P, Chen T, Wang J, Yue Z-B, Wang Y (2017) Robustness of Clostridium Saccharoperbutylacetonicum for acetone-butanol-ethanol production: effects of lignocellulosic sugars and inhibitors. Fuel 208(6):549–557

Zhang Y, Ezeji TC (2013) Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation. Biotechnol Biofuels 6(1):66 PubMed PMC

Zhang Y, Han B, Ezeji TC (2012) Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. New Biotechnol 29(3):345–351 PubMed

Zhang Y, Ujor V, Wick M, Ezeji TC (2015) Identification, purification and characterization of furfural transforming enzymes from Clostridium beijerinckii NCIMB 8052. Anaerobe 33(11):124–131 PubMed

Zhao Y, Tomas CA, Rudolph FB, Papoutsakis ET, Bennett GN (2005) Intracellular Butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation. Appl Environ Microbiol 71(1):530–537 PubMed PMC

Zou L, Jin X, Tao Y, Zheng Z, Ouyang J (2022) Unraveling the mechanism of furfural tolerance in engineered Pseudomonas Putida by genomics. Front Microbiol 13(4):1035263 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...