Multicenter Performance Evaluation of MALDI-TOF MS for Rapid Detection of Carbapenemase Activity in Enterobacterales: The Future of Networking Data Analysis With Online Software
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35154029
PubMed Central
PMC8834885
DOI
10.3389/fmicb.2021.789731
Knihovny.cz E-zdroje
- Klíčová slova
- MALDI-TOF MS, carbapenemases enzymes, clinical microbiology, imipenem, resistance detection,
- Publikační typ
- časopisecké články MeSH
In this study, we evaluate the performance of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for rapid detection of carbapenemase activity in Enterobacterales in clinical microbiology laboratories during a multicenter networking validation study. The study was divided into three different stages: "software design," "intercenter evaluation," and "clinical validation." First, a standardized procedure with an online software for data analysis was designed. Carbapenem resistance was detected by measuring imipenem hydrolysis and the results were automatically interpreted using the Clover MS data analysis software (Clover BioSoft, Spain). Second, a series of 74 genotypically characterized Enterobacterales (46 carbapenemase-producers and 28 non carbapenemase-producers) were analyzed in 8 international centers to ensure the reproducibility of the method. Finally, the methodology was evaluated independently in all centers during a 2-month period and results were compared with the reference standard for carbapenemase detection used in each center. The overall agreement rate relative to the reference method for carbapenemase resistance detection in clinical samples was 92.5%. The sensitivity was 93.9% and the specificity, 100%. Results were obtained within 60 min and accuracy ranged from 83.3 to 100% among the different centers. Further, our results demonstrate that MALDI-TOF MS is an outstanding tool for rapid detection of carbapenemase activity in Enterobacterales in clinical microbiology laboratories. The use of a simple in-house procedure with online software allows routine screening of carbapenemases in diagnostics, thereby facilitating early and appropriate antimicrobial therapy.
Departamento de Química Agrícola Edafología y Microbiología Universidad de Córdoba Córdoba Spain
Instituto Maimónides de Investigación Biomédica de Córdoba Córdoba Spain
Service de Microbiologie Cliniques Universitaires Saint Luc Brussels Belgium
Servicio de Análisis Clínicos Complejo Hospitalario Universitario A Coruña A Coruña Spain
Servicio de Microbiología Hospital General Universitario Gregorio Marañón Madrid Spain
Zobrazit více v PubMed
Anantharajah A., Tossens B., Olive N., Kabamba-Mukadi B., Rodriguez-Villalobos H., Verroken A. (2019). Performance evaluation of the MBT STAR PubMed DOI PMC
Brackmann M., Leib S. L., Tonolla M., Schürch N., Wittwer M. (2020). Antimicrobial resistance classification using MALDI-TOF-MS is not that easy: lessons from vancomycin-resistant PubMed DOI
Burckhardt I., Zimmermann S. (2011). Using matrix-assisted laser desorption ionization–time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. PubMed DOI PMC
Carvalhaes C. G., Ramos A. C., Oliveira L. C. G., Juliano M. A., Gales A. C. (2018). Rapid detection of ceftazidime/avibactam resistance by MALDI-TOF MS. PubMed DOI
Clark A. E., Kaleta E. J., Arora A., Wolk D. M. (2013). Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. PubMed DOI PMC
Cordovana M., Abdalla M., Ambretti S. (2020). Evaluation of the MBT STAR-Carba assay for the detection of carbapenemase production in PubMed
Cordovana M., Kostrzewa M., Sóki J., Witt E., Ambretti S., Pranada A. B. (2018). PubMed
Decousser J. W., Poirel L., Desroches M., Jayol A., Denamur E., Nordmann P. (2015). Failure to detect carbapenem-resistant PubMed DOI
Dortet L., Naas T. (2017). Noncarbapenemase OXA-48 variants (OXA-163 and OXA-405) falsely detected as carbapenemases by the β-Carba Test. PubMed DOI PMC
Dortet L., Jousset A., Sainte-Rose V., Cuzon G., Naas T. (2016). Prospective evaluation of the OXA-48 K-SeT assay, an immunochromatographic test for the rapid detection of OXA-48-type carbapenemases. PubMed
European Center for Disease Prevention and Control (2020).
Gato E., Constanso I. P., Rodiño-Janeiro B. K., Guijarro-Sánchez P., Alioto T., Arroyo M. J., et al. (2021). Occurrence of the p019 gene in the blaKPC-harboring plasmids: adverse clinical impact for direct tracking of KPC-producing PubMed PMC
Hoyos-Mallecot Y., Naas T., Bonnin R. A., Patino R., Glaser P., Fortineau N., et al. (2017). OXA-244-producing PubMed DOI PMC
Hrabák J., Chudáèková E., Papagiannitsis C. C. (2014). Detection of carbapenemases in PubMed
Hrabák J., Walková R., Studentová V., Chudácková E., Bergerová T. (2011). Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. PubMed PMC
Idelevich E. A., Sparbier K., Kostrzewa M., Becker K. (2018). Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay. PubMed DOI
Josten M., Dischinger J., Szekat C., Reif M., Al-Sabti N., Sahl H. G., et al. (2014). Identification of agr-positive methicillin-resistant PubMed DOI
Lasserre C., De Saint Martin L., Cuzon G., Bogaerts P., Lamar E., Glupczynski Y., et al. (2015). Efficient detection of carbapenemase activity in PubMed DOI PMC
Lau A. F., Wang H., Weingarten R. A., Drake S. K., Suffredini A. F., Garfield M. K., et al. (2014). A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant PubMed PMC
Monteferrante C. G., Sultan S., Ten Kate M. T., Dekker L. J., Sparbier K., Peer M., et al. (2016). Evaluation of different pretreatment protocols to detect accurately clinical carbapenemase-producing PubMed DOI
Oteo J., Pérez-Vázquez M., Bautista V., Ortega A., Zamarrón P., Saez D., et al. (2016). The spread of KPC-producing PubMed PMC
Oteo J., Saez D., Bautista V., Fernández-Romero S., Hernández-Molina J. M., Pérez-Vázquez M., et al. (2013). Spanish collaborating group for the antibiotic resistance surveillance program. Carbapenemase-producing PubMed PMC
Oueslati S., Iorga B. I., Tlili L., Exilie C., Zavala A., Dortet L., et al. (2019). Unravelling ceftazidime/avibactam resistance of KPC-28, a KPC-2 variant lacking carbapenemase activity. PubMed DOI
Oviaño M., Bou G. (2018). Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the rapid detection of antimicrobial resistance mechanisms and beyond. PubMed DOI PMC
Oviaño M., Gato E., Bou G. (2020). Rapid detection of KPC-producing enterobacterales susceptible to imipenem/relebactam by using the MALDI-TOF MS MBT STAR-Carba IVD assay. PubMed DOI PMC
Oviaño M., Gómara M., Barba M. J., Revillo M. J., Barbeyto L. P., Bou G. (2017). Towards the early detection of β-lactamase-producing PubMed DOI
Oviaño M., Rodicio M. R., Heinisch J. J., Rodicio R., Bou G., Fernández J. (2019). Analysis of the degradation of broad-spectrum cephalosporins by OXA-48-producing PubMed DOI PMC
Oviaño M., Sparbier K., Barba M. J., Kostrzewa M., Bou G. (2016). Universal protocol for the rapid automated detection of carbapenem-resistant Gram-negative bacilli directly from blood cultures by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). PubMed DOI
Papagiannitsis C. C., Študentová V., Izdebski R., Oikonomou O., Pfeifer Y., Petinaki E., et al. (2015). Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH PubMed DOI PMC
Pitout J. D. D., Peirano G., Kock M. M., Strydom K. A., Matsumura Y. (2019). The global ascendency of OXA-48-Type carbapenemases. PubMed DOI PMC
Potron A., Rondinaud E., Poirel L., Belmonte O., Boyer S., Camiade S., et al. (2013). Genetic and biochemical characterisation of OXA-232, a carbapenem-hydrolysing class D β-lactamase from PubMed DOI
Rodríguez-Baño J., Gutiérrez-Gutiérrez B., Machuca I., Pascual A. (2018). Treatment of infections caused by extended-spectrum-β- Lactamase-, AmpC-, and carbapenemase-producing PubMed DOI PMC
U.S. Centers for Disease Control and Prevention (2019).
Yoon E. J., Choi Y. J., Park S. H., Shin J. H., Park S. G., Choi J. R., et al. (2020). A novel KPC variant KPC-55 in PubMed DOI PMC