Multicenter Performance Evaluation of MALDI-TOF MS for Rapid Detection of Carbapenemase Activity in Enterobacterales: The Future of Networking Data Analysis With Online Software

. 2021 ; 12 () : 789731. [epub] 20220127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35154029

In this study, we evaluate the performance of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for rapid detection of carbapenemase activity in Enterobacterales in clinical microbiology laboratories during a multicenter networking validation study. The study was divided into three different stages: "software design," "intercenter evaluation," and "clinical validation." First, a standardized procedure with an online software for data analysis was designed. Carbapenem resistance was detected by measuring imipenem hydrolysis and the results were automatically interpreted using the Clover MS data analysis software (Clover BioSoft, Spain). Second, a series of 74 genotypically characterized Enterobacterales (46 carbapenemase-producers and 28 non carbapenemase-producers) were analyzed in 8 international centers to ensure the reproducibility of the method. Finally, the methodology was evaluated independently in all centers during a 2-month period and results were compared with the reference standard for carbapenemase detection used in each center. The overall agreement rate relative to the reference method for carbapenemase resistance detection in clinical samples was 92.5%. The sensitivity was 93.9% and the specificity, 100%. Results were obtained within 60 min and accuracy ranged from 83.3 to 100% among the different centers. Further, our results demonstrate that MALDI-TOF MS is an outstanding tool for rapid detection of carbapenemase activity in Enterobacterales in clinical microbiology laboratories. The use of a simple in-house procedure with online software allows routine screening of carbapenemases in diagnostics, thereby facilitating early and appropriate antimicrobial therapy.

Clover BioSoft Granada Spain

Departamento de Química Agrícola Edafología y Microbiología Universidad de Córdoba Córdoba Spain

Department of Microbiology Faculty of Medicine University Hospital in Pilsen Charles University Pilsen Czechia

Instituto Maimónides de Investigación Biomédica de Córdoba Córdoba Spain

Service de Microbiologie Cliniques Universitaires Saint Luc Brussels Belgium

Servicio de Análisis Clínicos Complejo Hospitalario Universitario A Coruña A Coruña Spain

Servicio de Microbiología Hospital General Universitario Gregorio Marañón Madrid Spain

Servicio de Microbiología Hospital Universitario Central de Asturias Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain

Servicio de Microbiología Hospital Universitario Son Espases Red Española de Investigación en Patología Infecciosa CIBER de Enfermedades Infecciosas Instituto de Salud Carlos 3 Palma Spain

Servicio de Microbiología Red Española de Investigación en Patología Infecciosa Hospital Universitario Ramón y Cajal Instituto Ramón y Cajal de Investigación Sanitaria CIBER de Enfermedades Infecciosas Instituto de Salud Carlos 3 Madrid Spain

Servicio de Microbiología Red Española de Investigación en Patología Infecciosa Instituto de Investigación Biomédica da Coruña CIBER de Enfermedades Infecciosas Instituto de Salud Carlos 3 Complejo Hospitalario Universitario A Coruña A Coruña Spain

Unidad Clínica de Enfermedades Infecciosas y Microbiología Clínica CSIC Red Española de Investigación en Patología Infecciosa Hospital Universitario Virgen Macarena Instituto de Biomedicina de Sevilla CIBER de Enfermedades Infecciosas Instituto de Salud Carlos 3 Universidad de Sevilla Seville Spain

Unidad de Gestión Clínica de Microbiología Red Española de Investigación en Patología Infecciosa Hospital Universitario Reina Sofía CIBER de Enfermedades Infecciosas Instituto de Salud Carlos 3 Córdoba Spain

Zobrazit více v PubMed

Anantharajah A., Tossens B., Olive N., Kabamba-Mukadi B., Rodriguez-Villalobos H., Verroken A. (2019). Performance evaluation of the MBT STAR§ -Carba IVD assay for the detection of carbapenemases With MALDI-TOF MS. Front. Microbiol. 10:1413. 10.3389/fmicb.2019.01413 PubMed DOI PMC

Brackmann M., Leib S. L., Tonolla M., Schürch N., Wittwer M. (2020). Antimicrobial resistance classification using MALDI-TOF-MS is not that easy: lessons from vancomycin-resistant Enterococcus faecium. Clin. Microbiol. Infect. 26 391–393. 10.1016/j.cmi.2019.10.027 PubMed DOI

Burckhardt I., Zimmermann S. (2011). Using matrix-assisted laser desorption ionization–time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J. Clin. Microbiol. 49 3321–3324. 10.1128/JCM.00287-11 PubMed DOI PMC

Carvalhaes C. G., Ramos A. C., Oliveira L. C. G., Juliano M. A., Gales A. C. (2018). Rapid detection of ceftazidime/avibactam resistance by MALDI-TOF MS. J. Antimicrob. Chemother. 73 2579–2582. 10.1093/jac/dky196 PubMed DOI

Clark A. E., Kaleta E. J., Arora A., Wolk D. M. (2013). Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 26 547–603. 10.1128/CMR.00072-12 PubMed DOI PMC

Cordovana M., Abdalla M., Ambretti S. (2020). Evaluation of the MBT STAR-Carba assay for the detection of carbapenemase production in Enterobacteriaceae and Hafniaceae with a large collection of routine isolates from plate cultures and patient-derived positive blood cultures. Microb. Drug Resist. 26 1298–1306. PubMed

Cordovana M., Kostrzewa M., Sóki J., Witt E., Ambretti S., Pranada A. B. (2018). Bacteroides fragilis: a whole MALDI-based workflow from identification to confirmation of carbapenemase production for routine laboratories. Anaerobe 54 246–253. PubMed

Decousser J. W., Poirel L., Desroches M., Jayol A., Denamur E., Nordmann P. (2015). Failure to detect carbapenem-resistant Escherichia coli producing OXA-48-like using the Xpert Carba-R assay§. Clin. Microbiol. Infect. 21 e9–e10. 10.1016/j.cmi.2014.09.006 PubMed DOI

Dortet L., Naas T. (2017). Noncarbapenemase OXA-48 variants (OXA-163 and OXA-405) falsely detected as carbapenemases by the β-Carba Test. J. Clin. Microbiol. 55 654–655. 10.1128/JCM.02086-16 PubMed DOI PMC

Dortet L., Jousset A., Sainte-Rose V., Cuzon G., Naas T. (2016). Prospective evaluation of the OXA-48 K-SeT assay, an immunochromatographic test for the rapid detection of OXA-48-type carbapenemases. J. Antimicrob. Chemother. 71 1834–1840. PubMed

European Center for Disease Prevention and Control (2020). The European Surveillance System Antimicrobial Resistance (AMR) Reporting Protocol 2020. Solna Municipality: European Center for Disease Prevention and Control.

Gato E., Constanso I. P., Rodiño-Janeiro B. K., Guijarro-Sánchez P., Alioto T., Arroyo M. J., et al. (2021). Occurrence of the p019 gene in the blaKPC-harboring plasmids: adverse clinical impact for direct tracking of KPC-producing Klebsiella pneumoniae by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 59:e0023821. PubMed PMC

Hoyos-Mallecot Y., Naas T., Bonnin R. A., Patino R., Glaser P., Fortineau N., et al. (2017). OXA-244-producing Escherichia coli isolates, a challenge for clinical microbiology laboratories. Antimicrob. Agents Chemother. 61:e00818-17. 10.1128/AAC.00818-17 PubMed DOI PMC

Hrabák J., Chudáèková E., Papagiannitsis C. C. (2014). Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin. Microbiol. Infect. 20 839–853. PubMed

Hrabák J., Walková R., Studentová V., Chudácková E., Bergerová T. (2011). Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 49 3222–3227. PubMed PMC

Idelevich E. A., Sparbier K., Kostrzewa M., Becker K. (2018). Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay. Clin. Microbiol. Infect. 24 738–743. 10.1016/j.cmi.2017.10.016 PubMed DOI

Josten M., Dischinger J., Szekat C., Reif M., Al-Sabti N., Sahl H. G., et al. (2014). Identification of agr-positive methicillin-resistant Staphylococcus aureus harbouring the class A mec complex by MALDI-TOF mass spectrometry. Int. J. Med. Microbiol. 304 1018–1023. 10.1016/j.ijmm.2014.07.005 PubMed DOI

Lasserre C., De Saint Martin L., Cuzon G., Bogaerts P., Lamar E., Glupczynski Y., et al. (2015). Efficient detection of carbapenemase activity in Enterobacteriaceae by matrix-assisted laser desorption ionization-time of flight mass spectrometry in less than 30 minutes. J. Clin. Microbiol. 53 2163–2171. 10.1128/JCM.03467-14 PubMed DOI PMC

Lau A. F., Wang H., Weingarten R. A., Drake S. K., Suffredini A. F., Garfield M. K., et al. (2014). A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae. J. Clin. Microbiol. 52 2804–2812. PubMed PMC

Monteferrante C. G., Sultan S., Ten Kate M. T., Dekker L. J., Sparbier K., Peer M., et al. (2016). Evaluation of different pretreatment protocols to detect accurately clinical carbapenemase-producing Enterobacteriaceae by MALDI-TOF. J. Antimicrob. Chemother. 71 2856–2867. 10.1093/jac/dkw208 PubMed DOI

Oteo J., Pérez-Vázquez M., Bautista V., Ortega A., Zamarrón P., Saez D., et al. (2016). The spread of KPC-producing Enterobacteriaceae in Spain: WGS analysisof the emerging high-risk clones of Klebsiella pneumoniae ST11/KPC-2, ST101/KPC-2 and ST512/KPC-3. J. Antimicrob. Chemother. 71 3392–3399. PubMed PMC

Oteo J., Saez D., Bautista V., Fernández-Romero S., Hernández-Molina J. M., Pérez-Vázquez M., et al. (2013). Spanish collaborating group for the antibiotic resistance surveillance program. Carbapenemase-producing enterobacteriaceae in Spain in 2012. Antimicrob. Agents Chemother. 57 6344–6347. PubMed PMC

Oueslati S., Iorga B. I., Tlili L., Exilie C., Zavala A., Dortet L., et al. (2019). Unravelling ceftazidime/avibactam resistance of KPC-28, a KPC-2 variant lacking carbapenemase activity. J. Antimicrob. Chemother. 74 2239–2246. 10.1093/jac/dkz209 PubMed DOI

Oviaño M., Bou G. (2018). Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the rapid detection of antimicrobial resistance mechanisms and beyond. Clin. Microbiol. Rev. 32:e00037-18. 10.1128/CMR.00037-18 PubMed DOI PMC

Oviaño M., Gato E., Bou G. (2020). Rapid detection of KPC-producing enterobacterales susceptible to imipenem/relebactam by using the MALDI-TOF MS MBT STAR-Carba IVD assay. Front. Microbiol. 11:328. 10.3389/fmicb.2020.00328 PubMed DOI PMC

Oviaño M., Gómara M., Barba M. J., Revillo M. J., Barbeyto L. P., Bou G. (2017). Towards the early detection of β-lactamase-producing Enterobacteriaceae by MALDI-TOF MS analysis. J. Antimicrob. Chemother. 72 2259–2262. 10.1093/jac/dkx127 PubMed DOI

Oviaño M., Rodicio M. R., Heinisch J. J., Rodicio R., Bou G., Fernández J. (2019). Analysis of the degradation of broad-spectrum cephalosporins by OXA-48-producing Enterobacteriaceae using MALDI-TOF MS. Microorganisms 7:614. 10.3390/microorganisms7120614 PubMed DOI PMC

Oviaño M., Sparbier K., Barba M. J., Kostrzewa M., Bou G. (2016). Universal protocol for the rapid automated detection of carbapenem-resistant Gram-negative bacilli directly from blood cultures by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Int. J. Antimicrob. Agents 48 655–660. 10.1016/j.ijantimicag.2016.08.024 PubMed DOI

Papagiannitsis C. C., Študentová V., Izdebski R., Oikonomou O., Pfeifer Y., Petinaki E., et al. (2015). Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH4HCO3, a reliable tool for direct detection of carbapenemase activity. J. Clin. Microbiol. 53 1731–1735. 10.1128/JCM.03094-14 PubMed DOI PMC

Pitout J. D. D., Peirano G., Kock M. M., Strydom K. A., Matsumura Y. (2019). The global ascendency of OXA-48-Type carbapenemases. Clin. Microbiol. Rev. 33:e00102-19. 10.1128/CMR.00102-19 PubMed DOI PMC

Potron A., Rondinaud E., Poirel L., Belmonte O., Boyer S., Camiade S., et al. (2013). Genetic and biochemical characterisation of OXA-232, a carbapenem-hydrolysing class D β-lactamase from Enterobacteriaceae. Int. J. Antimicrob. Agents 41 325–329. 10.1016/j.ijantimicag.2012.11.007 PubMed DOI

Rodríguez-Baño J., Gutiérrez-Gutiérrez B., Machuca I., Pascual A. (2018). Treatment of infections caused by extended-spectrum-β- Lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Rev. 31:e00079-17. 10.1128/CMR.00079-17 PubMed DOI PMC

U.S. Centers for Disease Control and Prevention (2019). Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Centers for Disease Control and Prevention.

Yoon E. J., Choi Y. J., Park S. H., Shin J. H., Park S. G., Choi J. R., et al. (2020). A novel KPC variant KPC-55 in Klebsiella pneumoniae ST307 of reinforced meropenem-hydrolyzing activity. Front. Microbiol. 11:561317. 10.3389/fmicb.2020.561317 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...