Changes in membrane plasmalogens of Clostridium pasteurianum during butanol fermentation as determined by lipidomic analysis

. 2015 ; 10 (3) : e0122058. [epub] 20150325

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25807381

Changes in membrane lipid composition of Clostridium pasteurianum NRRL B-598 were studied during butanol fermentation by lipidomic analysis, performed by high resolution electrospray ionization tandem mass spectrometry. The highest content of plasmalogen phospholipids correlated with the highest butanol productivity, which indicated a probable role of these compounds in the complex responses of cells toward butanol stress. A difference in the ratio of saturated to unsaturated fatty acids was found between the effect of butanol produced by the cells and butanol added to the medium. A decrease in the proportion of saturated fatty acids during conventional butanol production was observed while a rise in the content of these acids appeared when butanol was added to the culture. The largest change in total plasmalogen content was observed one hour after butanol addition i.e. at the 7th hour of cultivation. When butanol is produced by bacterial cells, then the cells are not subjected to severe stress and responded to it by relatively slowly changing the content of fatty acids and plasmalogens, while after a pulse addition of external butanol (to a final non-lethal concentration of 0.5 % v/v) the cells reacted relatively quickly (within a time span of tens of minutes) by increasing the total plasmalogen content.

Zobrazit více v PubMed

Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. Fermentative butanol production by Clostridia, Biotechnol Bioeng. 2008;101: 209–228. 10.1002/bit.22003 PubMed DOI

Patakova P, Linhova M, Rychtera M, Paulova L, Melzoch K. Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnol Adv. 2013;31: 58–57. 10.1016/j.biotechadv.2012.01.010 PubMed DOI

Wang Y, Li X, Mao Y, Blaschek HP. Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution. BMC Genomics. 2012;13: 102–117. 10.1186/1471-2164-13-102 PubMed DOI PMC

Linhova M, Patakova P, Lipovsky J, Fribert P, Paulova L, Rychtera M, et al. Development of flow cytometry technique for detection of thinning of peptidoglycan layer as a result of solvent production by Clostridium pasteurianum . Folia Microbiol. 2010;55: 340–344. 10.1007/s12223-010-0054-1 PubMed DOI

Linhova M, Branska B, Patakova P, Lipovsky J. Fribert P, Rychtera M, et al. Rapid flow cytometric method for viability determination of solventogenic clostridia. Folia Microbiol. 2012;57:307–311. 10.1007/s12223-012-0131-8 PubMed DOI

Patakova P, Maxa D, Rychtera M, Linhova M, Fribert P, Muzikova Z., et al. Perspectives of biobutanol production and use In: Bernardes MADS, editor. Biofuel's Engineering Process Technology. Rijeka: InTech; 2011. pp. 243–266.

Patakova P, Lipovsky J, Paulova L, Linhova M, Fribert P, Rychtera M, et al. Continuous production of butanol by bacteria of genus Clostridium . J Chem Eng. 2011;5: 121–128.

Kolek J, Sedlar K, Provaznik I, Patakova P. Draft genome sequence of Clostridium pasteurianum NRRL B-598, a potential butanol or hydrogen producer. Genome Announc. 2014. March 20 pii: e00192–14. 10.1128/genomeA.00192-14 PubMed DOI PMC

Vollherbst-Schneck K, Sands JA, Montenecourt BS. Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol. 1984;47: 193–194. PubMed PMC

Lepage C, Fayolle F, Hermann M, Vandecasteele JP. Changes in membrane lipid composition of Clostridium acetobutylicum during acetone-butanol fermentation: effects of solvents, growth temperature and pH. J Gen Microbiol. 1987;133: 103–110.

Zhao Y, Hindorff LA, Chuang A, Monroe-Augustus M, Lyristis M, Harrison ML, et al. Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol. 2003;69: 2831–2841. PubMed PMC

Rühl J, Hein EM, Hayen H, Schmid A, Blank LM. The glycerophospholipid inventory of Pseudomonas putida is conserved between strains and enables growth condition-related alterations. Microb Biotechnol. 2012;5: 45–58. 10.1111/j.1751-7915.2011.00286.x PubMed DOI PMC

Zhang YM, Rock C. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol. 2008;6: 222–233. 10.1038/nrmicro1839 PubMed DOI

Goldfine H, Johnston NC. Membrane lipids of clostridia In: Dürre P, editor. Handbook on Clostridia. Boca Raton: CRC Press, Taylor & Francis Group; 2005. pp. 297–309.

Venkataramanan KP, Kurniawan Y, Boatman JJ, Havnes CH, Taconi KA, Martin L, et al. Homeoviscous response of Clostridium pasteurianum to butanol toxicity during glycerol fermentation. J Biotechnol. 2014;179: 8–14. 10.1016/j.jbiotec.2014.03.017 PubMed DOI

Johnston NC, Goldfine H. Lipid-composition in the classification of the butyric acid-producing clostridia. J Gen Microbiol. 1983;129: 1075–1081. PubMed

Johnston NC, Aygun-Sunar S, Guan ZQ, Ribeiro AA, Daldal F, Raetz CR, et al. A phosphoethanolamine-modified glycosyl diradylglycerol in the polar lipids of Clostridium tetani . J Lipid Res. 2010;51: 1953–1961. 10.1194/jlr.M004788 PubMed DOI PMC

Guan ZQ, Johnston NC, Raetz CR, Johnson EA, Goldfine H. Lipid diversity among botulinum neurotoxin-producing clostridia. Microbiology. 2012;158: 2577–2584. PubMed PMC

Guan ZQ, Johnston NC, Aygun-Sunar S, Daldal F, Raetz CR, Goldfine H. Structural characterization of the polar lipids of Clostridium novyi NT. Further evidence for a novel anaerobic biosynthetic pathway to plasmalogens. Biochim Biophys Acta Mol Cell Biol Lipids. 2011;1811: 186–193. 10.1016/j.bbalip.2010.12.010 PubMed DOI PMC

Guan ZQ, Tian B, Perfumo A, Goldfine H. The polar lipids of Clostridium psychrophilum, an anaerobic psychrophile. Biochim Biophys Acta Mol Cell Biol Lipids. 2013;1831: 1108–1112. 10.1016/j.bbalip.2013.02.004 PubMed DOI PMC

Tian B, Guan ZQ, Goldfine H. An ethanolamine-phosphate modified glycolipid in Clostridium acetobutylicum that responds to membrane stress. Biochim Biophys Acta Mol Cell Biol Lipids. 2013;1831: 1185–1190. 10.1016/j.bbalip.2013.03.005 PubMed DOI PMC

Hongo M, Murata A, Kono K, Kato F. Lysogeny and bacteriocinogeny in strains of Clostridium species. Agr Biol Chem. 1968;32: 27–33.

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37: 911–917. PubMed

Kates K. Techniques of lipidology: isolation, analysis and identification of lipids In: Work TS, Work E, editors. Laboratory Techniques in Biochemistry and Molecular Biology, second ed Amsterdam: Elsevier; 1986. pp. 220–223.

Wood R, Snyder F. Quantitative determination of alk-1-enyl- and alkyl-glyceryl ethers in neutral lipids and phospholipids. Lipids. 1968;3: 129–135. PubMed

Baer SH, Blaschek HP, Smith TL. Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum . Appl Environ Microbiol. 1987;53: 2854–2861. PubMed PMC

Nicolau SA, Gaida SM, Papoutsakis ET. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. Metabolic Eng. 2010;12: 307–331. 10.1016/j.ymben.2010.03.004 PubMed DOI

Tomas CA, Beamish J, Papoutsakis ET. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum . J Bacteriol. 2004;186: 2006–2018 PubMed PMC

Zhu X, Cui J, Feng Y, Fa Y, Zhang J, Cui Q. Metabolic adaption of ethanol-tolerant Clostridium thermocellum . PLoS One. 2013. July 30 pii: e70631 10.1371/journal.pone.0070631 PubMed DOI PMC

Wang Q, Ventakataramanan KP, Huang H, Papoutsakis ET, Wu CH. Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress. BMC Systems Biology. 2013;7: 120–137. 10.1186/1752-0509-7-120 PubMed DOI PMC

Huffer S, Clark ME, Ning JC, Blanch HW, Clark DS. Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria and archea. Appl Environ Microbiol. 2011;77: 6400–6408. 10.1128/AEM.00694-11 PubMed DOI PMC

Juzlova P, Rezanka T, Martinkova M, Kren V. Long-chain fatty acids from Monascus purpureus . Phytochemistry. 1966;43: 151–153.

Vancura A, Rezanka T, Marsalek J, Melzoch K, Basarova G, Kristan V. Metabolism of L-threonine and fatty-acids and tylosin biosynthesis in Streptomyces fradiae . FEMS Microbiol Lett. 1988;49: 411–415.

Vancura A, Rezanka T, Marsalek J, Vancurova I, Kristan V, Basarova G. Effect of ammonium-ions on the composition of fatty-acids in Streptomyces fradiae, producer of tylosin. FEMS Microbiol Lett. 1987;48: 357–360.

Schwartz KM, Kuit W, Grimmler C, Ehrenreich A, Kengen SW. A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum-cellular behavior in adaptation to n-butanol. J Biotechnol. 2012;161: 366–377. 10.1016/j.jbiotec.2012.03.018 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...