Transcription profiling of butanol producer Clostridium beijerinckii NRRL B-598 using RNA-Seq

. 2018 May 30 ; 19 (1) : 415. [epub] 20180530

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29843608

Grantová podpora
17-00551S Grantová Agentura České Republiky

Odkazy

PubMed 29843608
PubMed Central PMC5975590
DOI 10.1186/s12864-018-4805-8
PII: 10.1186/s12864-018-4805-8
Knihovny.cz E-zdroje

BACKGROUND: Thinning supplies of natural resources increase attention to sustainable microbial production of bio-based fuels. The strain Clostridium beijerinckii NRRL B-598 is a relatively well-described butanol producer regarding its genotype and phenotype under various conditions. However, a link between these two levels, lying in the description of the gene regulation mechanisms, is missing for this strain, due to the lack of transcriptomic data. RESULTS: In this paper, we present a transcription profile of the strain over the whole fermentation using an RNA-Seq dataset covering six time-points with the current highest dynamic range among solventogenic clostridia. We investigated the accuracy of the genome sequence and particular genome elements, including pseudogenes and prophages. While some pseudogenes were highly expressed, all three identified prophages remained silent. Furthermore, we identified major changes in the transcriptional activity of genes using differential expression analysis between adjacent time-points. We identified functional groups of these significantly regulated genes and together with fermentation and cultivation kinetics captured using liquid chromatography and flow cytometry, we identified basic changes in the metabolism of the strain during fermentation. Interestingly, C. beijerinckii NRRL B-598 demonstrated different behavior in comparison with the closely related strain C. beijerinckii NCIMB 8052 in the latter phases of cultivation. CONCLUSIONS: We provided a complex analysis of the C. beijerinckii NRRL B-598 fermentation profile using several technologies, including RNA-Seq. We described the changes in the global metabolism of the strain and confirmed the uniqueness of its behavior. The whole experiment demonstrated a good reproducibility. Therefore, we will be able to repeat the experiment under selected conditions in order to investigate particular metabolic changes and signaling pathways suitable for following targeted engineering.

Zobrazit více v PubMed

Kujawska A, Kujawski J, Bryjak M, Kujawski W. ABE fermentation products recovery methods - A review. Renew. Sustain. Energy Rev. [Internet]. Pergamon; 2015 [cited 2017 Nov 23];48:648–661. Available from: http://www.sciencedirect.com/science/article/pii/S1364032115002981.

Patakova P, Linhova M, Rychtera M, Paulova L, Melzoch K. Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnol Adv. [Internet]. Elsevier; 2013 [cited 2017 Nov 23];31:58–67. Available from: http://www.sciencedirect.com/science/article/pii/S0734975012000122. PubMed

Nölling J, Breton G, Omelchenko M V, Makarova KS, Zeng Q, Gibson G, et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol [Internet]. American Society for Microbiology; 2001 [cited 2017 Nov 23];183:4823–4838. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11466286. PubMed PMC

Poehlein A, Grosse-Honebrink A, Zhang Y, Minton NP, Daniel R. Complete genome sequence of the nitrogen-fixing and solvent-producing Clostridium pasteurianum DSM 525. Genome Announc. [Internet]. American Society for Microbiology; 2015 [cited 2017 Nov 23];3:e01591-e01514. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25700415. PubMed PMC

Wang Y, Li X, Mao Y, Blaschek HP. Single-nucleotide resolution analysis of the transcriptome structure of Clostridium beijerinckii NCIMB 8052 using RNA-Seq. BMC Genomics [Internet]. BioMed Central; 2011 [cited 2017 Nov 22];12:479. Available from: http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-12-479. PubMed DOI PMC

Poehlein A, Solano JDM, Flitsch SK, Krabben P, Winzer K, Reid SJ, et al. Microbial solvent formation revisited by comparative genome analysis. Biotechnol Biofuels [Internet]. BioMed Central; 2017 [cited 2017 Nov 23];10:58. Available from: http://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-017-0742-z. PubMed DOI PMC

Ezeji T, Blaschek HP. Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour. Technol. [Internet]. Elsevier; 2008 [cited 2017 Dec 8];99:5232–5242. Available from: http://www.sciencedirect.com/science/article/pii/S0960852407007778. PubMed

Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. [Internet]. Nature Publishing Group; 2009 [cited 2017 Nov 23];10:57–63. Available from: http://www.nature.com/doifinder/10.1038/nrg2484. PubMed DOI PMC

Sedlar K, Kolek J, Skutkova H, Branska B, Provaznik I, Patakova P. Complete genome sequence of Clostridium pasteurianum NRRL B-598, a non-type strain producing butanol. J Biotechnol. 2015;214:113–4. Available from: http://www.sciencedirect.com/science/article/pii/S0168165615301279. PubMed

Sedlar K, Kolek J, Provaznik I, Patakova P. Reclassification of non-type strain Clostridium pasteurianum NRRL B-598 as Clostridium beijerinckii NRRL B-598. J Biotechnol [Internet]. 2017 [cited 2017 Mar 3];244:1–3. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0168165617300135. PubMed

Kolek J, Diallo M, Vasylkivska M, Branska B, Sedlar K, López-Contreras AM, et al. Comparison of expression of key sporulation, solventogenic and acetogenic genes in C. Beijerinckii NRRL B-598 and its mutant strain overexpressing spo0A. Appl. Microbiol. Biotechnol. [Internet]. Springer Berlin Heidelberg; 2017 [cited 2017 Dec 8];101:8279–8291. Available from: http://link.springer.com/10.1007/s00253-017-8555-3. PubMed DOI

Kolek J, Branska B, Drahokoupil M, Patakova P, Melzoch K. Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. Sauer M, editor. FEMS Microbiol Lett [Internet]. Oxford University Press; 2016 [cited 2018 Jan 3];363:fnw031. Available from: https://academic.oup.com/femsle/article-lookup/doi/10.1093/femsle/fnw031. PubMed DOI

Wang Y, Li X, Mao Y, Blaschek HP. Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq. BMC Genomics [Internet]. BioMed Central; 2012 [cited 2017 Nov 22];13:102. Available from: http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-13-102. PubMed DOI PMC

Angiuoli S V., Gussman A, Klimke W, Cochrane G, Field D, Garrity GM, et al. Toward an Online Repository of Standard Operating Procedures (SOPs) for (Meta)genomic Annotation. Omi. A J. Integr. Biol. [Internet]. 2008 [cited 2018 Jan 10];12:137–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18416670. PubMed PMC

Maaten L van der, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res [Internet]. 2008 [cited 2018 Jan 12];620:267–284. Available from: http://www.jmlr.org/papers/v9/vandermaaten08a.html.

Tracy BP, Gaida SM, Papoutsakis ET. Flow cytometry for bacteria: Enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. Curr. Opin. Biotechnol. [Internet]. 2010 [cited 2018 Feb 9];21:85–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20206495. PubMed

Tracy BP, Gaida SM, Papoutsakis ET. Development and application of flow-cytometric techniques for analyzing and sorting endospore-forming clostridia. Appl. Environ. Microbiol. [Internet]. 2008 [cited 2018 Feb 9];74:7497–7506. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18931289. PubMed PMC

Lahens NF, Kavakli IH, Zhang R, Hayer K, Black MB, Dueck H, et al. IVT-seq reveals extreme bias in RNA sequencing. Genome Biol. [Internet]. BioMed Central; 2014 [cited 2018 Jan 31];15:R86. Available from: http://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-6-r86. PubMed DOI PMC

Zytnicki M. Mmquant: how to count multi-mapping reads? BMC Bioinformatics [Internet]. BioMed Central; 2017 [cited 2018 Jan 31];18:411. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28915787. PubMed PMC

Goodhead I, Darby AC. Taking the pseudo out of pseudogenes. Curr. Opin. Microbiol. [Internet]. Elsevier Current Trends; 2015 [cited 2018 Jan 10];23:102–109. Available from: http://www.sciencedirect.com/science/article/pii/S1369527414001799. PubMed

Zheng D, Frankish A, Baertsch R, Kapranov P, Reymond A, Siew WC, et al. Pseudogenes in the ENCODE regions: Consensus annotation, analysis of transcription, and evolution. Genome Res. [Internet]. Cold Spring Harbor Laboratory Press; 2007 [cited 2018 Jan 10];17:839–851. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17568002. PubMed PMC

Balzer S, Malde K, Lanzen A, Sharma A, Jonassen I. Characteristics of 454 pyrosequencing data-enabling realistic simulation with flowsim. Bioinformatics [Internet]. Oxford University Press; 2011 [cited 2018 Jan 31]. p. i420–i425. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20823302. PubMed PMC

Al-Hinai MA, Jones SW, Papoutsakis ET. The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol Mol Biol Rev [Internet]. American Society for Microbiology (ASM); 2015 [cited 2018 Feb 9];79:19–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25631287. PubMed PMC

Alsaker K V, Papoutsakis ET. Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol [Internet]. American Society for Microbiology; 2005 [cited 2018 Feb 14];187:7103–7118. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16199581. PubMed PMC

Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev [Internet]. American Society for Microbiology (ASM); 1986 [cited 2018 Feb 20];50:484–524. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3540574. PubMed PMC

Patakova P, Kolek J, Sedlar K, Koscova P, Branska B, Kupkova K, et al. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol. Adv. [Internet]. Elsevier; 2017 [cited 2018 Feb 14]; Available from: https://www.sciencedirect.com/science/article/pii/S0734975017301568. PubMed

Dürre P, Fischer RJ, Kuhn A, Lorenz K, Schreiber W, Stürzenhofecker B, et al. Solventogenic enzymes of Clostridium acetobutylicum: catalytic properties, genetic organization, and transcriptional regulation. FEMS Microbiol Rev [Internet]. 1995 [cited 2018 Feb 9];17:251–262. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7576767. PubMed

Beaumont HJE, Gallie J, Kost C, Ferguson GC, Rainey PB. Experimental evolution of bet hedging. Nature [Internet]. 2009 [cited 2018 Feb 9];462:90–93. Available from: http://pubman.mpdl.mpg.de/pubman/item/escidoc:2259285/component/escidoc:2259283/Beaumont_et_al_2009.pdf. PubMed

Brussow H, Canchaya C, Hardt W-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev [Internet] American Society for Microbiology (ASM); 2004 [cited 2018 Feb 1];68:560–602. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15353570. PubMed PMC

Ochman H, Lawrence JG, Grolsman EA. Lateral gene transfer and the nature of bacterial innovation. Nature [Internet]. Nature Publishing Group; 2000 [cited 2018 Feb 1];405:299–304. Available from: http://www.nature.com/articles/35012500. PubMed

Jones DT, Shirley M, Wu X, Keis S. Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. J Mol Microbiol Biotechnol [Internet]. 2000 [cited 2018 Feb 9];2:21–26. Available from: https://www.caister.com/jmmb/v/v2/v2n1/03.pdf. PubMed

Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics [Internet]. Oxford University Press; 2016 [cited 2017 Aug 22];32:3047–3048. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw354. PubMed DOI PMC

Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics [Internet]. 2012 [cited 2017 Sep 14];28:3211–3217. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23071270. PubMed

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. [Internet]. Oxford University Press; 2013 [cited 2018 Jan 4];41:D590–D596. Available from: http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project. PubMed PMC

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics [Internet]. Oxford University Press; 2013 [cited 2017 Jul 26];29:15–21. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bts635. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics [Internet]. Oxford University Press; 2009 [cited 2017 Jul 26];25:2078–9. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp352. PubMed DOI PMC

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. [Internet]. NIH Public Access; 2011 [cited 2018 Jan 5];29:644–652. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21572440. PubMed PMC

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics [Internet]. 2009 [cited 2018 Jan 17];10:421. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20003500. PubMed PMC

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat. Biotechnol. [Internet]. 2011 [cited 2018 Jan 17];29:24–26. Available from: http://www.nature.com/doifinder/10.1038/nbt.1754. PubMed DOI PMC

Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: Circular and linear interactive genome visualization. Bioinformatics [Internet]. 2009 [cited 2018 Jan 17];25:119–120. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btn578. PubMed DOI PMC

Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, et al. Artemis: sequence visualization and annotation. Bioinformatics [Internet]. 2000 [cited 2018 Jan 29];16:944–945. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11120685. PubMed

Noé L, Kucherov G. YASS: Enhancing the sensitivity of DNA similarity Search Nucleic Acids Res [Internet]. Oxford University Press; 2005 [cited 2018 Jan 17];33:W540–W543. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gki478. PubMed DOI PMC

Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. [Internet]. Oxford University Press; 2016 [cited 2018 Jan 17];44:W16–W21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27141966. PubMed PMC

Akhter S, Aziz RK, Edwards RA. PhiSpy: A novel algorithm for finding prophages in bacterial genomes that combines similarity-and composition-based strategies. Nucleic Acids Res. [Internet]. Oxford University Press; 2012 [cited 2018 Jan 17];40:e126. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22584627. PubMed PMC

Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics [Internet]. 2014 [cited 2018 Jan 29];30:923–930. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24227677. PubMed

Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital Gene Expr data. Bioinformatics [Internet]. Oxford University Press; 2010 [cited 2018 Jan 5];26:139–140. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp616. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. [Internet]. BioMed Central; 2014 [cited 2018 Jan 5];15:550. Available from: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8. PubMed DOI PMC

van der Maaten L. Accelerating t-SNE using Tree-Based Algorithms J Mach Learn Res [Internet]. 2014 [cited 2018 Jan 17];15:1–21. Available from: http://jmlr.org/papers/volume15/vandermaaten14a/vandermaaten14a.pdf.

Wickham H. ggplot2 Elegant Graphics for Data Analysis [Internet]. Media. Springer; 2009 [cited 2018 Jan 29]. Available from: http://had.co.nz/ggplot2/book.

Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics [Internet]. BioMed Central; 2011 [cited 2018 Jan 29];12:35. Available from: http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-35. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Augusta: From RNA-Seq to gene regulatory networks and Boolean models

. 2024 Dec ; 23 () : 783-790. [epub] 20240120

Identification and Validation of Reference Genes in Clostridium beijerinckii NRRL B-598 for RT-qPCR Using RNA-Seq Data

. 2021 ; 12 () : 640054. [epub] 20210318

Deeper below the surface-transcriptional changes in selected genes of Clostridium beijerinckii in response to butanol shock

. 2021 Jan ; 10 (1) : e1146. [epub] 20201214

Changes in efflux pump activity of Clostridium beijerinckii throughout ABE fermentation

. 2021 Jan ; 105 (2) : 877-889. [epub] 20210106

Phenotypic and Genomic Analysis of Clostridium beijerinckii NRRL B-598 Mutants With Increased Butanol Tolerance

. 2020 ; 8 () : 598392. [epub] 20201105

Transcriptional analysis of amino acid, metal ion, vitamin and carbohydrate uptake in butanol-producing Clostridium beijerinckii NRRL B-598

. 2019 ; 14 (11) : e0224560. [epub] 20191107

A transcriptional response of Clostridium beijerinckii NRRL B-598 to a butanol shock

. 2019 ; 12 () : 243. [epub] 20191013

Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level

. 2019 Feb 04 ; 9 (1) : 1371. [epub] 20190204

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...