Resolving molecular frontier orbitals in molecular junctions with kHz resolution

. 2024 Sep 23 ; 15 (42) : 17328-36. [epub] 20240923

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39360008

Designing and building single-molecule circuits with tailored functionalities requires a detailed knowledge of the junction electronic structure. The energy of frontier molecular orbitals and their electronic coupling with the electrodes play a key role in determining the conductance of nanoscale molecular circuits. Here, we developed a method for measuring the current-voltage (I-V) characteristics of single-molecule junctions with a time resolution that is two orders of magnitude higher than previously achieved. These I-V measurements with high temporal resolution, together with atomistic simulations, enabled us to characterize in detail the frontier molecular states and their evolution in sub-angstrom stretching of the junction. For a series of molecules, changes in the electronic structure were resolved as well as their fluctuations prior to junction breakdown. This study describes a new methodology to determine the key frontier MO parameters at single-molecule junctions and demonstrates how these can be mechanically tuned at the single-molecule level.

Zobrazit více v PubMed

Ishii H. Sugiyama K. Ito E. Seki K. Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces. Adv. Mater. 1999;11:605–625. doi: 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q. DOI

Cahen D. Kahn A. Electron Energetics at Surfaces and Interfaces: Concepts and Experiments. Adv. Mater. 2003;15:271–277. doi: 10.1002/adma.200390065. DOI

Koch N. Energy Levels at Interfaces between Metals and Conjugated Organic Molecules. J. Phys.: Condens. Matter. 2008;20:184008. doi: 10.1088/0953-8984/20/18/184008. DOI

Heimel G. Romaner L. Zojer E. Bredas J.-L. The Interface Energetics of Self-Assembled Monolayers on Metals. Acc. Chem. Res. 2008;41:721–729. doi: 10.1021/ar700284q. PubMed DOI

Braun S. Salaneck W. R. Fahlman M. Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces. Adv. Mater. 2009;21:1450–1472. doi: 10.1002/adma.200802893. DOI

Hwang J. Wan A. Kahn A. Energetics of Metal–Organic Interfaces: New Experiments and Assessment of the Field. Mater. Sci. Eng., R. 2009;64:1–31. doi: 10.1016/j.mser.2008.12.001. DOI

Salomon A. Cahen D. Lindsay S. Tomfohr J. Engelkes V. B. Frisbie C. D. Comparison of Electronic Transport Measurements on Organic Molecules. Adv. Mater. 2003;15:1881–1890. doi: 10.1002/adma.200306091. DOI

Engelkes V. B. Beebe J. M. Frisbie C. D. Length-Dependent Transport in Molecular Junctions Based on SAMs of Alkanethiols and Alkanedithiols: Effect of Metal Work Function and Applied Bias on Tunneling Efficiency and Contact Resistance. J. Am. Chem. Soc. 2004;126:14287–14296. doi: 10.1021/ja046274u. PubMed DOI

Beebe J. M. Kim B. Gadzuk J. W. Frisbie C. D. Kushmerick J. G. Transition from Direct Tunneling to Field Emission in Metal-Molecule-Metal Junctions. Phys. Rev. Lett. 2006;97:026801. doi: 10.1103/PhysRevLett.97.026801. PubMed DOI

Kim B. Choi S. H. Zhu X. Y. Frisbie C. D. Molecular Tunnel Junctions Based on π-Conjugated Oligoacene Thiols and Dithiols between Ag, Au, and Pt Contacts: Effect of Surface Linking Group and Metal Work Function. J. Am. Chem. Soc. 2011;133:19864–19877. doi: 10.1021/ja207751w. PubMed DOI

Venkataraman L. Park Y. S. Whalley A. C. Nuckolls C. Hybertsen M. S. Steigerwald M. L. Electronics and Chemistry: Varying Single-Molecule Junction Conductance Using Chemical Substituents. Nano Lett. 2007;7:502–506. doi: 10.1021/nl062923j. PubMed DOI

Ivie J. A. Bamberger N. D. Parida K. N. Shepard S. Dyer D. Saraiva-Souza A. Himmelhuber R. McGrath D. V. Smeu M. Monti O. L. A. Correlated Energy-Level Alignment Effects Determine Substituent-Tuned Single-Molecule Conductance. ACS Appl. Mater. Interfaces. 2021;13:4267–4277. doi: 10.1021/acsami.0c19404. PubMed DOI

Yuan L. Franco C. Crivillers N. Mas-Torrent M. Cao L. Sangeeth C. S. S. Rovira C. Veciana J. Nijhuis C. A. Chemical Control over the Energy-Level Alignment in a Two-Terminal Junction. Nat. Commun. 2016;7:12066. doi: 10.1038/ncomms12066. PubMed DOI PMC

Sun K. Kawai S. Strength of Electronic Decoupling of Fullerene on an AuSiX Layer Formed on Au(111) Phys. Chem. Chem. Phys. 2021;23:5455–5459. doi: 10.1039/D0CP05764A. PubMed DOI

Frisenda R. van der Zant H. S. J. Transition from Strong to Weak Electronic Coupling in a Single-Molecule Junction. Phys. Rev. Lett. 2016;117:126804. doi: 10.1103/PhysRevLett.117.126804. PubMed DOI

Bruot C. Hihath J. Tao N. Mechanically Controlled Molecular Orbital Alignment in Single Molecule Junctions. Nat. Nanotechnol. 2012;7:35–40. doi: 10.1038/nnano.2011.212. PubMed DOI

Perrin M. L. Verzijl C. J. O. Martin C. A. Shaikh A. J. Eelkema R. van Esch J. H. van Ruitenbeek J. M. Thijssen J. M. van der Zant H. S. J. Dulić D. Large Tunable Image-Charge Effects in Single-Molecule Junctions. Nat. Nanotechnol. 2013;8:282–287. doi: 10.1038/nnano.2013.26. PubMed DOI

Quek S. Y. Kamenetska M. Steigerwald M. L. Choi H. J. Louie S. G. Hybertsen M. S. Neaton J. B. Venkataraman L. Mechanically Controlled Binary Conductance Switching of a Single-Molecule Junction. Nat. Nanotechnol. 2009;4:230–234. doi: 10.1038/nnano.2009.10. PubMed DOI

Tsutsui M. Morikawa T. He Y. High Thermopower of Mechanically Stretched Single-Molecule Junctions. Sci. Rep. 2015;5:11519. doi: 10.1038/srep11519. PubMed DOI PMC

Rincón-García L. Ismael A. Evangeli C. et al., Molecular Design and Control of Fullerene-Based Bi-Thermoelectric Materials. Nat. Mater. 2016;15:289–293. doi: 10.1038/nmat4487. PubMed DOI

Kim Y.-H. Kim H. S. Lee J. Tsutsui M. Kawai T. Stretching-Induced Conductance Variations as Fingerprints of Contact Configurations in Single-Molecule Junctions. J. Am. Chem. Soc. 2017;139:8286–8294. doi: 10.1021/jacs.7b03393. PubMed DOI

Morikawa T. Tsutsui M. Komoto Y. Yokota K. Taniguchi M. Dependence of Molecular Diode Behaviors on Aromaticity. J. Phys. Chem. Lett. 2022;13:6359–6366. doi: 10.1021/acs.jpclett.2c01780. PubMed DOI

Fujii S. Montes E. Cho H. Yue Y. Koike M. Nishino T. Vázquez H. Kiguchi M. Mechanically Tuned Thermopower of Single-Molecule Junctions. Adv. Electron. Mater. 2022;8:2200700. doi: 10.1002/aelm.202200700. DOI

Lokamani M. Kilibarda F. Günther F. Kelling J. Strobel A. Zahn P. Juckeland G. Gothel K. V. Scheer E. Gemming S. Erbe A. Stretch Evolution of Electronic Coupling of the Thiophenyl Anchoring Group with Gold in Mechanically Controllable Break Junctions. J. Phys. Chem. Lett. 2023;14:5709–5717. doi: 10.1021/acs.jpclett.3c00370. PubMed DOI PMC

Tsutsui M. Taniguchi M. Kawai T. Local Heating in Metal-Molecule-Metal Junctions. Nano Lett. 2008;8:3293–3297. doi: 10.1021/nl801669e. PubMed DOI

Isshiki Y. Fujii S. Nishino T. Kiguchi M. Fluctuation in Interface and Electronic Structure of Single-Molecule Junctions Investigated by Current versus Bias Voltage Characteristics. J. Am. Chem. Soc. 2018;140:3760–3767. doi: 10.1021/jacs.7b13694. PubMed DOI

Cuevas J. C. and Scheer E., Molecular Electronics: An Introduction to Theory and Experiment, World Scientific, Singapore, 2010, vol. 1

Komoto Y. Fujii S. Nakamura H. Tada T. Nishino T. Kiguchi M. Resolving Metal-Molecule Interfaces at Single-Molecule Junctions. Sci. Rep. 2016;6:26606. doi: 10.1038/srep26606. PubMed DOI PMC

Vladyka A. Perrin M. L. Overbeck J. Ferradás R. R. García-Suárez V. Gantenbein M. Brunner J. Mayor M. Ferrer J. Calame M. In situ Formation of One-Dimensional Coordination Polymers in Molecular Junctions. Nat. Commun. 2019;10:262. doi: 10.1038/s41467-018-08025-9. PubMed DOI PMC

Kamenetska M. Quek S. Y. Whalley A. C. Steigerwald M. L. Choi H. J. Louie S. G. Nuckolls C. Hybertsen M. S. Neaton J. B. Venkataraman L. Conductance and Geometry of Pyridine-Linked Single-Molecule Junctions. J. Am. Chem. Soc. 2010;132:6817–6821. doi: 10.1021/ja1015348. PubMed DOI

Kim Y. Pietsch T. Erbe A. Belzig W. Scheer E. Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor. Nano Lett. 2011;11:3734–3738. doi: 10.1021/nl201777m. PubMed DOI

Bilan S. Zotti L. A. Pauly F. Cuevas J. C. Theoretical Study of the Charge Transport through C60-Based Single-Molecule Junctions. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;85:205403. doi: 10.1103/PhysRevB.85.205403. DOI

Shi X.-Q. van Hove M. A. Zhang R.-Q. Survey of Structural and Electronic Properties of C60 on Close-Packed Metal Surfaces. J. Mater. Sci. 2012;47:7341–7355. doi: 10.1007/s10853-012-6361-y. DOI

Tan A. Balachandran J. Sadat S. Gavini V. Dunietz B. D. Jang S.-Y. Reddy P. Effect of Length and Contact Chemistry on the Electronic Structure and Thermoelectric Properties of Molecular Junctions. J. Am. Chem. Soc. 2011;133:8838–8841. doi: 10.1021/ja202178k. PubMed DOI

Kim T. Darancet P. Widawsky J. R. Kotiuga M. Quek S. Y. Neaton J. B. Venkataraman L. Determination of Energy Level Alignment and Coupling Strength in 4,4’-Bipyridine Single-Molecule Junctions. Nano Lett. 2014;14:794–798. doi: 10.1021/nl404143v. PubMed DOI

Evangeli C. Gillemot K. Leary E. González M. T. Rubio-Bollinger G. Lambert C. J. Agraït N. Engineering the Thermopower of C60 Molecular Junctions. Nano Lett. 2013;13:2141–2145. doi: 10.1021/nl400579g. PubMed DOI

Reddy P. Jang S.-Y. Segalman R. A. Majumdar A. Thermoelectricity in Molecular Junctions. Science. 2007;315:1568–1571. doi: 10.1126/science.1137149. PubMed DOI

Isshiki Y. Li D. Kiguchi M. Nishino T. Pauly F. Fujii S. Structural Asymmetry of Metallic Single-Atom Contacts Detected by Current–Voltage Characteristics. ACS Appl. Mater. Interfaces. 2022;14:11919–11926. doi: 10.1021/acsami.1c24096. PubMed DOI

Lee W. Kim K. Jeong W. Zotti L. A. Pauly F. Cuevas J. C. Reddy P. Heat Dissipation in Atomic-Scale Junctions. Nature. 2013;498:209–212. doi: 10.1038/nature12183. PubMed DOI

Kaneko S. Montes E. Suzuki S. Fujii S. Nishino T. Tsukagoshi K. Ikeda K. Kano H. Nakamura H. Vázquez H. Kiguchi M. Identifying the Molecular Adsorption Site of a Single Molecule Junction through Combined Raman and Conductance Studies. Chem. Sci. 2019;10:6261–6269. doi: 10.1039/C9SC00701F. PubMed DOI PMC

Delmas V. Diez-Cabanes V. van Dyck C. Scheer E. Costuas K. Cornil J. On the Reliability of Acquiring Molecular Junction Parameters by Lorentzian Fitting of I/V Curves. Phys. Chem. Chem. Phys. 2020;22:26702–26706. doi: 10.1039/D0CP05372D. PubMed DOI

Liu Z.-F. Neaton J. B. Voltage Dependence of Molecule–Electrode Coupling in Biased Molecular Junctions. J. Phys. Chem. C. 2017;121:21136–21144. doi: 10.1021/acs.jpcc.7b05567. DOI

Yelin T. Korytár R. Sukenik N. Vardimon R. Kumar B. Nuckolls C. Evers F. Tal O. Conductance Saturation in a Series of Highly Transmitting Molecular Junctions. Nat. Mater. 2016;15:444–449. doi: 10.1038/nmat4552. PubMed DOI

Quek S. Y. Choi H. J. Louie S. G. Neaton J. B. Thermopower of Amine−Gold-Linked Aromatic Molecular Junctions from First Principles. ACS Nano. 2011;5:551–557. doi: 10.1021/nn102604g. PubMed DOI

Xu B. Tao N. J. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science. 2003;301:1221–1223. doi: 10.1126/science.1087481. PubMed DOI

Matsuhita R. Horikawa M. Naitoh Y. Nakamura H. Kiguchi M. Conductance and SERS Measurement of Benzenedithiol Molecules Bridging Between Au Electrodes. J. Phys. Chem. C. 2013;117:1791–1795. doi: 10.1021/jp3112638. DOI

Soler J. M. Artacho E. Gale J. D. García A. Junquera J. Ordejón P. Sánchez-Portal D. The SIESTA Method for Ab Initio Order-N Materials Simulation. J. Phys.: Condens. Matter. 2002;14:2745–2779. doi: 10.1088/0953-8984/14/11/302. DOI

Lorente N. Frederiksen T. García A. Brandbyge M. Improvements on Non-Equilibrium and Transport Green Function Techniques: The Next-Generation Transiesta. Comput. Phys. Commun. 2017;212:8–24. doi: 10.1016/j.cpc.2016.09.022. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...