Resolving molecular frontier orbitals in molecular junctions with kHz resolution
Status Publisher Language English Country Great Britain, England Media print-electronic
Document type Journal Article
PubMed
39360008
PubMed Central
PMC11441469
DOI
10.1039/d4sc05285d
PII: d4sc05285d
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Designing and building single-molecule circuits with tailored functionalities requires a detailed knowledge of the junction electronic structure. The energy of frontier molecular orbitals and their electronic coupling with the electrodes play a key role in determining the conductance of nanoscale molecular circuits. Here, we developed a method for measuring the current-voltage (I-V) characteristics of single-molecule junctions with a time resolution that is two orders of magnitude higher than previously achieved. These I-V measurements with high temporal resolution, together with atomistic simulations, enabled us to characterize in detail the frontier molecular states and their evolution in sub-angstrom stretching of the junction. For a series of molecules, changes in the electronic structure were resolved as well as their fluctuations prior to junction breakdown. This study describes a new methodology to determine the key frontier MO parameters at single-molecule junctions and demonstrates how these can be mechanically tuned at the single-molecule level.
See more in PubMed
Ishii H. Sugiyama K. Ito E. Seki K. Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces. Adv. Mater. 1999;11:605–625. doi: 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q. DOI
Cahen D. Kahn A. Electron Energetics at Surfaces and Interfaces: Concepts and Experiments. Adv. Mater. 2003;15:271–277. doi: 10.1002/adma.200390065. DOI
Koch N. Energy Levels at Interfaces between Metals and Conjugated Organic Molecules. J. Phys.: Condens. Matter. 2008;20:184008. doi: 10.1088/0953-8984/20/18/184008. DOI
Heimel G. Romaner L. Zojer E. Bredas J.-L. The Interface Energetics of Self-Assembled Monolayers on Metals. Acc. Chem. Res. 2008;41:721–729. doi: 10.1021/ar700284q. PubMed DOI
Braun S. Salaneck W. R. Fahlman M. Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces. Adv. Mater. 2009;21:1450–1472. doi: 10.1002/adma.200802893. DOI
Hwang J. Wan A. Kahn A. Energetics of Metal–Organic Interfaces: New Experiments and Assessment of the Field. Mater. Sci. Eng., R. 2009;64:1–31. doi: 10.1016/j.mser.2008.12.001. DOI
Salomon A. Cahen D. Lindsay S. Tomfohr J. Engelkes V. B. Frisbie C. D. Comparison of Electronic Transport Measurements on Organic Molecules. Adv. Mater. 2003;15:1881–1890. doi: 10.1002/adma.200306091. DOI
Engelkes V. B. Beebe J. M. Frisbie C. D. Length-Dependent Transport in Molecular Junctions Based on SAMs of Alkanethiols and Alkanedithiols: Effect of Metal Work Function and Applied Bias on Tunneling Efficiency and Contact Resistance. J. Am. Chem. Soc. 2004;126:14287–14296. doi: 10.1021/ja046274u. PubMed DOI
Beebe J. M. Kim B. Gadzuk J. W. Frisbie C. D. Kushmerick J. G. Transition from Direct Tunneling to Field Emission in Metal-Molecule-Metal Junctions. Phys. Rev. Lett. 2006;97:026801. doi: 10.1103/PhysRevLett.97.026801. PubMed DOI
Kim B. Choi S. H. Zhu X. Y. Frisbie C. D. Molecular Tunnel Junctions Based on π-Conjugated Oligoacene Thiols and Dithiols between Ag, Au, and Pt Contacts: Effect of Surface Linking Group and Metal Work Function. J. Am. Chem. Soc. 2011;133:19864–19877. doi: 10.1021/ja207751w. PubMed DOI
Venkataraman L. Park Y. S. Whalley A. C. Nuckolls C. Hybertsen M. S. Steigerwald M. L. Electronics and Chemistry: Varying Single-Molecule Junction Conductance Using Chemical Substituents. Nano Lett. 2007;7:502–506. doi: 10.1021/nl062923j. PubMed DOI
Ivie J. A. Bamberger N. D. Parida K. N. Shepard S. Dyer D. Saraiva-Souza A. Himmelhuber R. McGrath D. V. Smeu M. Monti O. L. A. Correlated Energy-Level Alignment Effects Determine Substituent-Tuned Single-Molecule Conductance. ACS Appl. Mater. Interfaces. 2021;13:4267–4277. doi: 10.1021/acsami.0c19404. PubMed DOI
Yuan L. Franco C. Crivillers N. Mas-Torrent M. Cao L. Sangeeth C. S. S. Rovira C. Veciana J. Nijhuis C. A. Chemical Control over the Energy-Level Alignment in a Two-Terminal Junction. Nat. Commun. 2016;7:12066. doi: 10.1038/ncomms12066. PubMed DOI PMC
Sun K. Kawai S. Strength of Electronic Decoupling of Fullerene on an AuSiX Layer Formed on Au(111) Phys. Chem. Chem. Phys. 2021;23:5455–5459. doi: 10.1039/D0CP05764A. PubMed DOI
Frisenda R. van der Zant H. S. J. Transition from Strong to Weak Electronic Coupling in a Single-Molecule Junction. Phys. Rev. Lett. 2016;117:126804. doi: 10.1103/PhysRevLett.117.126804. PubMed DOI
Bruot C. Hihath J. Tao N. Mechanically Controlled Molecular Orbital Alignment in Single Molecule Junctions. Nat. Nanotechnol. 2012;7:35–40. doi: 10.1038/nnano.2011.212. PubMed DOI
Perrin M. L. Verzijl C. J. O. Martin C. A. Shaikh A. J. Eelkema R. van Esch J. H. van Ruitenbeek J. M. Thijssen J. M. van der Zant H. S. J. Dulić D. Large Tunable Image-Charge Effects in Single-Molecule Junctions. Nat. Nanotechnol. 2013;8:282–287. doi: 10.1038/nnano.2013.26. PubMed DOI
Quek S. Y. Kamenetska M. Steigerwald M. L. Choi H. J. Louie S. G. Hybertsen M. S. Neaton J. B. Venkataraman L. Mechanically Controlled Binary Conductance Switching of a Single-Molecule Junction. Nat. Nanotechnol. 2009;4:230–234. doi: 10.1038/nnano.2009.10. PubMed DOI
Tsutsui M. Morikawa T. He Y. High Thermopower of Mechanically Stretched Single-Molecule Junctions. Sci. Rep. 2015;5:11519. doi: 10.1038/srep11519. PubMed DOI PMC
Rincón-García L. Ismael A. Evangeli C. et al., Molecular Design and Control of Fullerene-Based Bi-Thermoelectric Materials. Nat. Mater. 2016;15:289–293. doi: 10.1038/nmat4487. PubMed DOI
Kim Y.-H. Kim H. S. Lee J. Tsutsui M. Kawai T. Stretching-Induced Conductance Variations as Fingerprints of Contact Configurations in Single-Molecule Junctions. J. Am. Chem. Soc. 2017;139:8286–8294. doi: 10.1021/jacs.7b03393. PubMed DOI
Morikawa T. Tsutsui M. Komoto Y. Yokota K. Taniguchi M. Dependence of Molecular Diode Behaviors on Aromaticity. J. Phys. Chem. Lett. 2022;13:6359–6366. doi: 10.1021/acs.jpclett.2c01780. PubMed DOI
Fujii S. Montes E. Cho H. Yue Y. Koike M. Nishino T. Vázquez H. Kiguchi M. Mechanically Tuned Thermopower of Single-Molecule Junctions. Adv. Electron. Mater. 2022;8:2200700. doi: 10.1002/aelm.202200700. DOI
Lokamani M. Kilibarda F. Günther F. Kelling J. Strobel A. Zahn P. Juckeland G. Gothel K. V. Scheer E. Gemming S. Erbe A. Stretch Evolution of Electronic Coupling of the Thiophenyl Anchoring Group with Gold in Mechanically Controllable Break Junctions. J. Phys. Chem. Lett. 2023;14:5709–5717. doi: 10.1021/acs.jpclett.3c00370. PubMed DOI PMC
Tsutsui M. Taniguchi M. Kawai T. Local Heating in Metal-Molecule-Metal Junctions. Nano Lett. 2008;8:3293–3297. doi: 10.1021/nl801669e. PubMed DOI
Isshiki Y. Fujii S. Nishino T. Kiguchi M. Fluctuation in Interface and Electronic Structure of Single-Molecule Junctions Investigated by Current versus Bias Voltage Characteristics. J. Am. Chem. Soc. 2018;140:3760–3767. doi: 10.1021/jacs.7b13694. PubMed DOI
Cuevas J. C. and Scheer E., Molecular Electronics: An Introduction to Theory and Experiment, World Scientific, Singapore, 2010, vol. 1
Komoto Y. Fujii S. Nakamura H. Tada T. Nishino T. Kiguchi M. Resolving Metal-Molecule Interfaces at Single-Molecule Junctions. Sci. Rep. 2016;6:26606. doi: 10.1038/srep26606. PubMed DOI PMC
Vladyka A. Perrin M. L. Overbeck J. Ferradás R. R. García-Suárez V. Gantenbein M. Brunner J. Mayor M. Ferrer J. Calame M. In situ Formation of One-Dimensional Coordination Polymers in Molecular Junctions. Nat. Commun. 2019;10:262. doi: 10.1038/s41467-018-08025-9. PubMed DOI PMC
Kamenetska M. Quek S. Y. Whalley A. C. Steigerwald M. L. Choi H. J. Louie S. G. Nuckolls C. Hybertsen M. S. Neaton J. B. Venkataraman L. Conductance and Geometry of Pyridine-Linked Single-Molecule Junctions. J. Am. Chem. Soc. 2010;132:6817–6821. doi: 10.1021/ja1015348. PubMed DOI
Kim Y. Pietsch T. Erbe A. Belzig W. Scheer E. Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor. Nano Lett. 2011;11:3734–3738. doi: 10.1021/nl201777m. PubMed DOI
Bilan S. Zotti L. A. Pauly F. Cuevas J. C. Theoretical Study of the Charge Transport through C60-Based Single-Molecule Junctions. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;85:205403. doi: 10.1103/PhysRevB.85.205403. DOI
Shi X.-Q. van Hove M. A. Zhang R.-Q. Survey of Structural and Electronic Properties of C60 on Close-Packed Metal Surfaces. J. Mater. Sci. 2012;47:7341–7355. doi: 10.1007/s10853-012-6361-y. DOI
Tan A. Balachandran J. Sadat S. Gavini V. Dunietz B. D. Jang S.-Y. Reddy P. Effect of Length and Contact Chemistry on the Electronic Structure and Thermoelectric Properties of Molecular Junctions. J. Am. Chem. Soc. 2011;133:8838–8841. doi: 10.1021/ja202178k. PubMed DOI
Kim T. Darancet P. Widawsky J. R. Kotiuga M. Quek S. Y. Neaton J. B. Venkataraman L. Determination of Energy Level Alignment and Coupling Strength in 4,4’-Bipyridine Single-Molecule Junctions. Nano Lett. 2014;14:794–798. doi: 10.1021/nl404143v. PubMed DOI
Evangeli C. Gillemot K. Leary E. González M. T. Rubio-Bollinger G. Lambert C. J. Agraït N. Engineering the Thermopower of C60 Molecular Junctions. Nano Lett. 2013;13:2141–2145. doi: 10.1021/nl400579g. PubMed DOI
Reddy P. Jang S.-Y. Segalman R. A. Majumdar A. Thermoelectricity in Molecular Junctions. Science. 2007;315:1568–1571. doi: 10.1126/science.1137149. PubMed DOI
Isshiki Y. Li D. Kiguchi M. Nishino T. Pauly F. Fujii S. Structural Asymmetry of Metallic Single-Atom Contacts Detected by Current–Voltage Characteristics. ACS Appl. Mater. Interfaces. 2022;14:11919–11926. doi: 10.1021/acsami.1c24096. PubMed DOI
Lee W. Kim K. Jeong W. Zotti L. A. Pauly F. Cuevas J. C. Reddy P. Heat Dissipation in Atomic-Scale Junctions. Nature. 2013;498:209–212. doi: 10.1038/nature12183. PubMed DOI
Kaneko S. Montes E. Suzuki S. Fujii S. Nishino T. Tsukagoshi K. Ikeda K. Kano H. Nakamura H. Vázquez H. Kiguchi M. Identifying the Molecular Adsorption Site of a Single Molecule Junction through Combined Raman and Conductance Studies. Chem. Sci. 2019;10:6261–6269. doi: 10.1039/C9SC00701F. PubMed DOI PMC
Delmas V. Diez-Cabanes V. van Dyck C. Scheer E. Costuas K. Cornil J. On the Reliability of Acquiring Molecular Junction Parameters by Lorentzian Fitting of I/V Curves. Phys. Chem. Chem. Phys. 2020;22:26702–26706. doi: 10.1039/D0CP05372D. PubMed DOI
Liu Z.-F. Neaton J. B. Voltage Dependence of Molecule–Electrode Coupling in Biased Molecular Junctions. J. Phys. Chem. C. 2017;121:21136–21144. doi: 10.1021/acs.jpcc.7b05567. DOI
Yelin T. Korytár R. Sukenik N. Vardimon R. Kumar B. Nuckolls C. Evers F. Tal O. Conductance Saturation in a Series of Highly Transmitting Molecular Junctions. Nat. Mater. 2016;15:444–449. doi: 10.1038/nmat4552. PubMed DOI
Quek S. Y. Choi H. J. Louie S. G. Neaton J. B. Thermopower of Amine−Gold-Linked Aromatic Molecular Junctions from First Principles. ACS Nano. 2011;5:551–557. doi: 10.1021/nn102604g. PubMed DOI
Xu B. Tao N. J. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science. 2003;301:1221–1223. doi: 10.1126/science.1087481. PubMed DOI
Matsuhita R. Horikawa M. Naitoh Y. Nakamura H. Kiguchi M. Conductance and SERS Measurement of Benzenedithiol Molecules Bridging Between Au Electrodes. J. Phys. Chem. C. 2013;117:1791–1795. doi: 10.1021/jp3112638. DOI
Soler J. M. Artacho E. Gale J. D. García A. Junquera J. Ordejón P. Sánchez-Portal D. The SIESTA Method for Ab Initio Order-N Materials Simulation. J. Phys.: Condens. Matter. 2002;14:2745–2779. doi: 10.1088/0953-8984/14/11/302. DOI
Lorente N. Frederiksen T. García A. Brandbyge M. Improvements on Non-Equilibrium and Transport Green Function Techniques: The Next-Generation Transiesta. Comput. Phys. Commun. 2017;212:8–24. doi: 10.1016/j.cpc.2016.09.022. DOI