• This record comes from PubMed

Norcorrole as a Delocalized, Antiaromatic System

. 2019 Mar 19 ; 9 (1) : 4852. [epub] 20190319

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
262229 Norges Forskningsråd (Research Council of Norway)

Links

PubMed 30890733
PubMed Central PMC6425022
DOI 10.1038/s41598-019-39972-y
PII: 10.1038/s41598-019-39972-y
Knihovny.cz E-resources

Nickel norcorrole provides an unusual example of a molecule that is strongly antiaromatic according to the magnetic criterion, but which exhibits, according to high-quality DFT calculations, a symmetric, delocalized structure with no difference in bond length between adjacent Cmeso-Cα bonds. A fragment molecular orbital analysis suggests that these discordant observations are a manifestation of the high stability of the dipyrrin fragments, which retain their electronic and structural integrity even as part of the norcorrole ring system.

See more in PubMed

Ghosh, A., Wasbotten, I. H., Davis, W. & Swarts, J. C. Norcorrole and dihydronorcorrole: A predictive quantum chemical study. Eur. J. Inorg. Chem. 4479–4485 (2005).

Cissell JA, Vaid TP, Yap GP. The Doubly Oxidized, Antiaromatic Tetraphenylporphyrin Complex [Li(TPP)][BF4] Org. Lett. 2006;8:2401–2404. doi: 10.1021/ol060772l. PubMed DOI

Pawlicki M, Latos-Grażyński L. Aromaticity Switching in Porphyrinoids. Chem. Asian J. 2015;10:1438–1451. doi: 10.1002/asia.201500170. PubMed DOI

Reddy BK, Basavarajappa A, Ambhore MD, Anand VG. Isophlorinoids: The Antiaromatic Congeners of Porphyrinoids. Chem. Rev. 2017;117:3420–3443. doi: 10.1021/acs.chemrev.6b00544. PubMed DOI

Bröring M, Köhler S, Kleeberg C. Norcorrole: Observation of the Smallest Porphyrin Variant with a N4 Core. Angew. Chem. Int. Ed. 2008;47:5658–5660. doi: 10.1002/anie.200801196. PubMed DOI

Ito T, et al. Gram‐Scale Synthesis of Nickel(II) Norcorrole: The Smallest Antiaromatic Porphyrinoid. Angew. Chem. Int. Ed. 2012;51:8542–8545. doi: 10.1002/anie.201204395. PubMed DOI

Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI

Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Miehlich B, Savin A, Stoll H, Preuss H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989;157:200–206. doi: 10.1016/0009-2614(89)87234-3. DOI

Grimme S, Anthony J, Ehrlich S, Krieg HA. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Yonezawa T, Shafie SA, Hiroto S, Shinokubo H. Shaping Antiaromatic π-Systems by Metalation: Synthesis of a Bowl-Shaped Antiaromatic Palladium Norcorrole. Angew. Chem. Int. Ed. 2017;56:11822–11825. doi: 10.1002/anie.201706134. PubMed DOI

Yoshida T, Sakamaki D, Seki S, Shinokubo H. Enhancing the low-energy absorption band and charge mobility of antiaromatic NiII norcorroles by their substituent effects. Chem. Commun. 2017;53:1112. doi: 10.1039/C6CC09444A. PubMed DOI

Nozawa R, et al. Stacked antiaromatic porphyrins. Nat. Comm. 2016;7:13620. doi: 10.1038/ncomms13620. PubMed DOI PMC

Kawashima H, Hiroto S, Shinokubo H. Acid-Mediated Migration of Bromide in an Antiaromatic Porphyrinoid: Preparation of Two Regioisomeric Ni(II) Bromonorcorroles. J. Org. Chem. 2017;82:10425–10432. doi: 10.1021/acs.joc.7b01899. PubMed DOI

Nozawa R, Yamamoto K, Shin J, Hiroto S, Shinokubo H. Regioselective Nucleophilic Functionalization of Antiaromatic Nickel(II) Norcorroles. Angew. Chem. Int. Ed. 2015;54:8454–8457. doi: 10.1002/anie.201502666. PubMed DOI

Deng Z, Li X, Stępień M, Chmielewski PJ. Nitration of Norcorrolatonickel(II): First Observation of a Diatropic Current in a System Comprising a Norcorrole Ring. Chem. Eur. J. 2016;22:4231–4246. doi: 10.1002/chem.201504584. PubMed DOI

Yoshida T, Shinokubo H. Direct amination of the antiaromatic NiII norcorrole. Mater. Chem. Front. 2017;1:1853–1857. doi: 10.1039/C7QM00176B. DOI

Fliegl H, Sundholm D. Aromatic Pathways of Porphins, Chlorins, and Bacteriochlorins. J. Org. Chem. 2012;77:3408–3414. doi: 10.1021/jo300182b. PubMed DOI

Ghosh, A., Larsen, S., Conradie, J. & Foroutan-Nejad, C. Local versus global aromaticity in azuliporphyrin and benziporphyrin derivatives. Org. Biomol. Chem. 16, 7964–7970 (2018). PubMed

Foroutan-Nejad C, Larsen S, Conradie J, Ghosh A. Isocorroles as Homoaromatic NIR-Absorbing Chromophores: A First Quantum Chemical Study. Sci. Rep. 2018;8:11952. doi: 10.1038/s41598-018-29819-3. PubMed DOI PMC

Foroutan-Nejad C. Interatomic Magnetizability: A QTAIM-Based Approach toward Deciphering Magnetic Aromaticity. J. Phys. Chem. A. 2011;115:12555–12560. doi: 10.1021/jp202901f. PubMed DOI

Foroutan-Nejad C. Al42−: the anion–π interactions and aromaticity in the presence of counter ions. Phys. Chem. Chem. Phys. 2012;14:9738. doi: 10.1039/c2cp40511c. PubMed DOI

Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI

Bader, R. F. W. Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford, New York (1990).

Foroutan-Nejad C, Shahbazian S, Marek R. Toward a Consistent Interpretation of the QTAIM: Tortuous Link between Chemical Bonds, Interactions, and Bond/Line Paths. Chem. Eur. J. 2014;20:10140–10152. doi: 10.1002/chem.201402177. PubMed DOI

Bader RFW, Keith TA. Properties of atoms in molecules: Magnetic susceptibilities. J. Chem. Phys. 1993;99:3683–3693. doi: 10.1063/1.466166. DOI

Bader RFW, Keith TA. Use of electron charge and current distributions in the determination of atomic contributions to magnetic properties. Int. J. Quantum Chem. 1996;60:373–379. doi: 10.1002/(SICI)1097-461X(1996)60:1<373::AID-QUA36>3.0.CO;2-C. DOI

Badri Z, et al. All-Metal Aromaticity: Revisiting the Ring Current Model among Transition Metal Clusters. J. Chem. Theory Comput. 2013;9:4789–4796. doi: 10.1021/ct4007184. PubMed DOI

Foroutan-Nejad C. Is NICS a reliable aromaticity index for transition metal clusters? Theor. Chem. Acc. 2015;134:8. doi: 10.1007/s00214-015-1617-7. DOI

Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chem. Rev. 2005;105:3842–3888. doi: 10.1021/cr030088+. PubMed DOI

Heilbronner E. Why do some molecules have symmetry different from that expected? J. Chem. Educ. 1989;66:471–478. doi: 10.1021/ed066p471. DOI

Shaik S, Shurki A, Danovich D, Hiberty PC. A Different Story of π-Delocalization – The Distortivity of π-Electrons and Its Chemical Manifestations. Chem. Rev. 2001;101:1501–1539. doi: 10.1021/cr990363l. PubMed DOI

Ceulemans, A., Lijnen, E., Fowler, P. W., Mallion, R. B. & Pisanski, T. Graph theory and the Jahn–Teller theorem. Proc. Roy. Soc. A 1–19 (2011).

Cho S, et al. Defining Spectroscopic Features of Heteroannulenic Antiaromatic Porphyrinoids. J. Phys. Chem. Lett. 2010;1:895–900. doi: 10.1021/jz100039n. DOI

Fujii S, et al. Highly-conducting molecular circuits based on antiaromaticity. Nat. Commun. 2017;8:15984. doi: 10.1038/ncomms15984. PubMed DOI PMC

te Velde G, et al. Chemistry with ADF. J. Comput. Chem. 2001;22:931–967. doi: 10.1002/jcc.1056. DOI

Guerra CF, Snijders JG, te Velde G, Baerends EJ. Towards an order-N DFT method. Theor. Chem. Acc. 1998;99:391–403.

Frisch, M. J. et al. Gaussian 09, Gaussian, Inc., Wallingford CT (2013).

Keith, T. A. AIMAll, Gristmill Software: Overland Park KS, USA (2017).

Keith TA, Bader RFW. Calculation of magnetic response properties using atoms in molecules. Chem. Phys. Lett. 1992;194:1–8. doi: 10.1016/0009-2614(92)85733-Q. DOI

Keith TA, Bader RFW. Calculation of magnetic response properties using a continuous set of gauge transformations. Chem. Phys. Lett. 1993;210:223–231. doi: 10.1016/0009-2614(93)89127-4. DOI

Keith TA, Bader RFW. Topological analysis of magnetically induced molecular current distributions. J. Chem. Phys. 1993;99:3669–3682. doi: 10.1063/1.466165. DOI

Keith TA. Calculation of magnetizabilities using GIAO current density distributions. Chem. Phys. 1996;213:123–132. doi: 10.1016/S0301-0104(96)00272-8. DOI

Keith TA, Bader RFW. Properties of atoms in molecules: nuclear magnetic shielding. Can. J. Chem. 1996;74:185–200. doi: 10.1139/v96-022. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...