Enantiotropy of Simvastatin as a Result of Weakened Interactions in the Crystal Lattice: Entropy-Driven Double Transitions and the Transient Modulated Phase as Seen by Solid-State NMR Spectroscopy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA18011
Ministry of Education Youth and Sports
PubMed
35163943
PubMed Central
PMC8838109
DOI
10.3390/molecules27030679
PII: molecules27030679
Knihovny.cz E-zdroje
- Klíčová slova
- dynamics, enantiotropy, entropy, polymorphism, solid-state nuclear magnetic resonance (NMR), transient modulated phase,
- MeSH
- entropie * MeSH
- magnetická rezonanční spektroskopie metody MeSH
- molekulární konformace * MeSH
- molekulární modely MeSH
- nízká teplota MeSH
- simvastatin chemie MeSH
- vodíková vazba MeSH
- změna skupenství * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- simvastatin MeSH
In crystalline molecular solids, in the absence of strong intermolecular interactions, entropy-driven processes play a key role in the formation of dynamically modulated transient phases. Specifically, in crystalline simvastatin, the observed fully reversible enantiotropic behavior is associated with multiple order-disorder transitions: upon cooling, the dynamically disordered high-temperature polymorphic Form I is transformed to the completely ordered low-temperature polymorphic Form III via the intermediate (transient) modulated phase II. This behavior is associated with a significant reduction in the kinetic energy of the rotating and flipping ester substituents, as well as a decrease in structural ordering into two distinct positions. In transient phase II, the conventional three-dimensional structure is modulated by periodic distortions caused by cooperative conformation exchange of the ester substituent between the two states, which is enabled by weakened hydrogen bonding. Based on solid-state NMR data analysis, the mechanism of the enantiotropic phase transition and the presence of the transient modulated phase are documented.
Zobrazit více v PubMed
Griesser U.J., Jetti R.K.R., Haddow M.F., Brehmer T., Apperley D.C., King A., Harris R.K. Conformational Polymorphism in Oxybuprocaine Hydrochloride. Cryst. Growth Des. 2008;8:44–56. doi: 10.1021/cg070590d. DOI
Falls Z., Avery P., Wang X., Hilleke K.P., Zurek E. The XtalOpt Evolutionary Algorithm for Crystal Structure Prediction. J. Phys. Chem. C. 2021;125:1601–1620. doi: 10.1021/acs.jpcc.0c09531. DOI
Piaggi P.M., Parrinello M. Predicting polymorphism in molecular crystals using orientational entropy. Proc. Natl. Acad. Sci. USA. 2018;115:10251–10256. doi: 10.1073/pnas.1811056115. PubMed DOI PMC
Hušák M., Kratochvíl B., Jegorov A., Brus J., Maixner J., Rohlicek J. Simvastatin: Structure solution of two new low-temperature phases from synchrotron powder diffraction and ss-NMR. Struct. Chem. 2010;21:511–518. doi: 10.1007/s11224-009-9579-9. DOI
Simões R.G., Bernardes C.E.S., Joseph A., Piedade M.F.M., Kraus W., Emmerling F., Diogo H.P., Minas da Piedade M.E. Polymorphism in Simvastatin: Twinning, Disorder, and Enantiotropic Phase Transitions. Mol. Pharm. 2018;15:5349–5360. doi: 10.1021/acs.molpharmaceut.8b00818. PubMed DOI
Czernek J., Urbanova M., Brus J. NMR Crystallography of the Polymorphs of Metergoline. Crystals. 2018;8:378. doi: 10.3390/cryst8100378. DOI
Hušák M., Jegorov A., Czernek J., Rohlíček J., Žižková S., Vraspír P., Kolesa P., Fitch A., Brus J. Successful Strategy for High Degree of Freedom Crystal Structure Determination from Powder X-Ray Diffraction Data: A Case Study for Selexipag Form I with 38 DOF. Cryst. Growth Des. 2019;19:4625–4631. doi: 10.1021/acs.cgd.9b00517. DOI
Baias M., Dumez J.N., Svensson P.H., Schantz S., Day G.M., Emsley L. De Novo Determination of the Crystal Structure of a Large Drug Molecule by Crystal Structure Prediction-Based Powder NMR Crystallography. J. Am. Chem. Soc. 2013;135:17501–17507. doi: 10.1021/ja4088874. PubMed DOI
Hughes C.E., Reddy G.N.M., Masiero S., Brown S.P., Williams P.A., Harris K.D.M. Determination of a complex crystal structure in the absence of single crystals: Analysis of powder X-ray diffraction data, guided by solid-state NMR and periodic DFT calculations, reveals a new 20-deoxyguanosine structural motif. Chem. Sci. 2017;8:3971–3979. doi: 10.1039/C7SC00587C. PubMed DOI PMC
Luedeker D., Gossmann R., Langer K., Brunklaus G. Crystal Engineering of Pharmaceutical Co-crystals: “NMR Crystallography” of Niclosamide Co-crystals. Cryst. Growth Des. 2016;16:3087–3100. doi: 10.1021/acs.cgd.5b01619. DOI
Fernandes J.A., Sardo M., Mafra L., Choquesillo-Lazarte D., Masciocchi N. X-ray and NMR Crystallography Studies of Novel Theophylline Cocrystals Prepared by Liquid Assisted Grinding. Cryst. Growth Des. 2015;15:3674–3683. doi: 10.1021/acs.cgd.5b00279. DOI
Husak M., Jegorov A., Rohlicek J., Fitch A., Czernek J., Kobera L., Brus J. Determining the Crystal Structures of Peptide Analogs of Boronic Acid in the Absence of Single Crystals: Intricate Motifs of Ixazomib Citrate Revealed by XRPD Guided by ss-NMR. Cryst. Growth Des. 2018;18:3616–3625. doi: 10.1021/acs.cgd.8b00402. DOI
Brus J., Czernek J., Hruby M., Svec P., Kobera L., Abbrent S., Urbanova M. Efficient Strategy for Determining the Atomic-Resolution Structure of Micro- and Nanocrystalline Solids within Polymeric Microbeads: Domain-Edited NMR Crystallography. Macromolecules. 2018;51:5364–5374. doi: 10.1021/acs.macromol.8b00392. DOI
Hodgkinson P. NMR Crystallography of Molecular Organics. Prog. Nucl. Mag. Res. Spectrosc. 2020;118:10–53. doi: 10.1016/j.pnmrs.2020.03.001. PubMed DOI
Egorov V.M., Marikhin V.A., Myasnikova L.P., Nakamura M. Specific features of phase transitions in molecular crystals of diols. Phys. Solid State. 2009;51:2129–2134. doi: 10.1134/S1063783409100230. DOI
Szewczyk D., Gebbia J.F., Jeżowski A., Krivchikov A.I., Guidi T., Cazorla C., Tamarit J.-L. Heat capacity anomalies of the molecular crystal 1-fluoro-adamantane at low temperatures. Sci. Rep. 2021;11:18640. doi: 10.1038/s41598-021-97973-2. PubMed DOI PMC
Nti-Gyabaah J., Chan V., Chiew Y.C. Solubility and limiting activity coefficient of simvastatin in different organic solvents. Fluid Phase Equilib. 2009;280:35–41. doi: 10.1016/j.fluid.2009.03.006. DOI
Brus J., Jegorov A. Through-Bonds and Through-Space Solid-State NMR Correlations at Natural Isotopic Abundance: Signal Assignment and Structural Study of Simvastatin. J. Phys. Chem. A. 2004;108:3955–3964. doi: 10.1021/jp0498163. DOI
Brus J. Heating of samples induced by fast magic-angle spinning. Solid State Nucl. Magn. Reson. 2000;16:151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI
Johansson A., Tegenfeldt J. NMR study of crystalline and amorphous poly(ethylene oxide) Macromolecules. 1992;25:4712–4715. doi: 10.1021/ma00044a036. DOI
VanderHart D.L., Earl W.L., Garroway A.N. Resolution in 13C NMR of organic solids using high-power proton decoupling and magic angle sample spinning. J. Magn. Reason. 1981;44:361–401. doi: 10.1016/0022-2364(81)90178-5. DOI
Policianova O., Brus J., Hruby M., Urbanova M., Zhigunov A., Kredatusova J., Kobera L. Structural Diversity of Solid Dispersions of Acetylsalicylic Acid as Seen by Solid-State NMR. Mol. Pharm. 2014;11:516–530. doi: 10.1021/mp400495h. PubMed DOI
Brus J., Urbanova M., Strachota A. Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes: Structure and Segmental Dynamics as Studied by Solid-State NMR. Macromolecules. 2008;41:372–386. doi: 10.1021/ma702140g. DOI
Njus J.M. Solid-state NMR and 2,3-dicyano-5,7-dimethyl-6H-1,4-diazepine. Solid State Nucl. Magn. Reson. 2006;29:283–293. doi: 10.1016/j.ssnmr.2005.10.005. PubMed DOI
Simões R.G., Bernardes C.E.S., Diogo H.P., Agapito F., Minas da Piedade M.E. Energetics and Structure of Simvastatin. Mol. Pharm. 2013;10:2713–2722. doi: 10.1021/mp400132r. PubMed DOI
Hong M., Yao X.L., Jakes K., Huster D. Investigation of molecular motions by Lee-Goldburg cross-polarization NMR Spectroscopy. J. Phys. Chem. B. 2002;106:7355–7364. doi: 10.1021/jp0156064. DOI
Ramamoorthy A., Wei Y.F., Lee D.K. PISEMA solid-state NMR spectroscopy. Annu. Rep. NMR Spectrosc. 2004;52:1–52. doi: 10.1016/S0066-4103(04)52001-X. DOI
Brus J., Urbanova M. Selective measurement of heteronuclear 1H-13C dipolar couplings in motionally heterogeneous semicrystalline polymer systems. J. Phys. Chem. A. 2005;109:5050–5054. doi: 10.1021/jp0503821. PubMed DOI
Brus J., Urbanová M., Kelnar I., Kotek J. A solid-state NMR study of structure and segmental dynamics of semicrystalline elastomer-toughened nanocomposites. Macromolecules. 2006;39:5400–5409. doi: 10.1021/ma0604946. DOI
Brus J., Jakeš J. Geometry of multiple-spin systems as reflected in 13C-{1H} dipolar spectra measured at Lee-Goldburg cross-polarization. Solid State Nucl. Magn. Reson. 2005;27:180–191. doi: 10.1016/j.ssnmr.2004.11.002. PubMed DOI
Palmer A.G., Williams J., McDermott A. Nuclear magnetic resonance studies of biopolymer dynamics. J. Phys. Chem. 1996;100:13293–13310. doi: 10.1021/jp9606117. DOI
Lipari G., Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 1982;104:4546–4559. doi: 10.1021/ja00381a009. DOI
Graeser K.A., Strachan C.J., Patterson J.E., Gordon K.C., Rades T. Physicochemical Properties and Stability of Two Differently Prepared Amorphous Forms of Simvastatin. Cryst. Growth Des. 2008;8:128–135. doi: 10.1021/cg700913m. DOI
Suzuki M., Maeda Y., Akita M., Teramae H., Kobayashi K. Polymorphs Related by an Enantiotropic Phase Transition but Having Only Order–Disorder-Level Conformational Differences in a Spiro-Conjugated Imidazolidine Ring Compound. Cryst. Growth Des. 2014;14:6302–6310. doi: 10.1021/cg501060w. DOI
Červinka C., Fulem M., Štejfa V., Růžička K. Analysis of Uncertainty in the Calculation of Ideal-Gas Thermodynamic Properties Using the One-Dimensional Hindered Rotor (1-DHR) Model. J. Chem. Eng. Data. 2017;62:445–455. doi: 10.1021/acs.jced.6b00757. DOI
Berg W.T., Scott D.W., Hubbard W.N., Todd S.S., Messerly J.F., Hossenlopp I.A., Osborn A., Douslin D.R., McCullough J.P. The chemical thermodynamic properties of cyclopentanethiol. J. Phys. Chem. 1961;65:1425–1430. doi: 10.1021/j100826a035. DOI
Kim Y., Mckinley E.J., Christensen K.E., Rees N.H., Thompson A.L. Toward the Understanding of Modulation in Molecular Materials: Barluenga’s Reagent and its Analogues. Cryst. Growth Des. 2014;14:6294–6301. doi: 10.1021/cg500983s. DOI
Ladizhansky V., Vega S. Polarization transfer dynamics in Lee-Goldburg Cross polarization nuclear magnetic resonance experiments on rotating solids. J. Chem. Phys. 2000;112:7158–7168. doi: 10.1063/1.481281. DOI
van Rossum B.-J., Förster H., de Groot H.J.M. High-field and high-speed CP-MAS13C NMR heteronuclear dipolar-correlation spectroscopy of solids with frequency-switched Lee-Goldburg homonuclear decoupling. J. Magn. Reson. 1997;124:516–519. doi: 10.1006/jmre.1996.1089. DOI
Langer B., Schnell I., Spiess H.W., Grimmer A.R. Temperature calibration under ultrafast MAS conditions. J. Magn. Reson. 1999;138:182–186. doi: 10.1006/jmre.1999.1717. PubMed DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Segall M.D., Lindan P.J.D., Probert M.J., Pickard C.J., Hasnip P.J., Clark S.J., Payne M.C. First principles simulation: Ideas, illustrations, and the CASTEP code. J. Phys. Condens. Matter. 2002;14:2717–2744. doi: 10.1088/0953-8984/14/11/301. DOI
Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Kristallogr. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI
Gao S.-P., Pickard C.J., Perlov A., Milman V. Core-Level Spectroscopy Calculation and the Plane Wave Pseudopotential Method. J. Phys. Condens. Matter. 2009;21:104203. doi: 10.1088/0953-8984/21/10/104203. PubMed DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Pickard C.J., Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B. 2001;63:245101. doi: 10.1103/PhysRevB.63.245101. DOI
Yates J.R., Pickard C.J., Mauri F. Calculations of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B. 2007;76:024401. doi: 10.1103/PhysRevB.76.024401. DOI
Czernek J. On the solid-state NMR spectra of naproxen. Chem. Phys. Lett. 2015;619:230–235. doi: 10.1016/j.cplett.2014.11.031. DOI
BIOVIA Materials Studio Dassault Systèmes, Vélizy-Villacoublay: Paris, France. [(accessed on 20 November 2021)]. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/
Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI
Czernek J., Brus J. Theoretical predictions of the two-dimensional solid-state NMR spectra: A case study of the 13C-1H correlations in metergoline. Chem. Phys. Lett. 2013;586:56–60. doi: 10.1016/j.cplett.2013.09.015. DOI
Czernek J., Brus J. The covariance of the differences between experimental and theoretical chemical shifts as an aid for assigning two-dimensional heteronuclear correlation solid-state NMR spectra. Chem. Phys. Lett. 2014;608:334–339. doi: 10.1016/j.cplett.2014.05.099. DOI
Czernek J., Brus J. A Volumetric Analysis of the 1H NMR Chemical Shielding in Supramolecular Systems. Int. J. Mol. Sci. 2021;22:3333. doi: 10.3390/ijms22073333. PubMed DOI PMC