Strong Be-N Interaction Induced Complementary Chemical Tuning to Design a Dual-gated Single Molecule Junction
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
19-27454X
Grantová Agentura České Republiky
MTR/2019/000416
Department of Science and Technology
PubMed
37401206
DOI
10.1002/chem.202301473
Knihovny.cz E-zdroje
- Klíčová slova
- Beryllium bond, molecular electronics, single-molecule junction, supramolecular chemistry, π-hole,
- Publikační typ
- časopisecké články MeSH
The interaction between pyridines and the π-hole of BeH2 leads to the formation of strong beryllium-bonded complexes. Theoretical investigations demonstrate that the Be-N bonding interaction can effectively regulate the electronic current through a molecular junction. The electronic conductance exhibits distinct switching behavior depending on the substituent groups at the para position of pyridine, highlighting the role of Be-N interaction as a potent chemical gate in the proposed device. The complexes exhibit short intermolecular distances ranging from 1.724 to 1.752 Å, emphasizing their strong binding. Detailed analysis of electronic rearrangements and geometric perturbations upon complex formation provides insights into the underlying reasons for the formation of such strong Be-N bonds, with bond strengths varying from -116.25 to -92.96 kJ/mol. Moreover, the influence of chemical substituents on the local electronic transmission of the beryllium-bonded complex offers valuable insights for the implementation of a secondary chemical gate in single-molecule devices. This study paves the way for the development of chemically gateable, functional single-molecule transistors, advancing the design and fabrication of multifunctional single-molecule devices in the nanoscale regime.
Department of Chemistry North Eastern Hill University Shillong 793022 India
School of Advanced Sciences and Languages VIT Bhopal University Bhopal 466114 India
Zobrazit více v PubMed
A. Aviram, M. A. Ratner, Chem. Phys. Lett. 1974, 29, 277-283.
S. J. van der Molen, P. Liljeroth, J. Phys. Condens. Matter 2010, 22, 133001(1-30).
J. Cuevas, E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment, 1st ed.; World Scientific: Singapore; 2010.
I. Díez-Pérez, J. Hihath, Y. Lee, L. Yu, L. Adamska, M. A. Kozhushner, I. I. Oleynik, N. Tao, Nat. Chem. 2009, 1, 635-641.
R. M. Metzger, B. Chen, U. Hopfner, M. V. Lakshmikantham, D. Vuillaume, T. Kawai, X. L. Wu, H. Tachibana, T. V. Hughes, H. Sakurai, J. W. Baldwin, C. Hosch, M. P. Cava, L. Brehmer, G. J. Ashwell, J. Am. Chem. Soc. 1997, 119, 10455-10466.
H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, P. L. McEuen, Nature 2000, 407, 57-60.
J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruña, P. L. McEuen, D. C. Ralph, Nature 2002, 417, 722-725.
S. J. van der Molen, P. Liljeroth, J. Phys. Condens. Matter 2010, 22, 133001 (1-30).
S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, L. Venkataraman, Nat. Nanotechnol. 2009, 4, 230-234.
E. Lortscher, J. W. Ciszek, J. Tour, H. Riel, Small 2006, 2, 973-977.
J. Lee, H. Chang, S. Kim, G. S. Bang, H. Lee, Angew. Chem. Int. Ed. 2009, 121, 8653-8656.
P. D. Jonathan, G. J. Milburn, Philos. Trans. R. Soc. London Ser. A 2003, 361, 1655-1674.
H. Fu, H. Zhu, P. Li, M. Li, L. Yang, C. Jia, X. Guo, J. Mater. Chem. C 2022, 10, 2375-2389.
R. M. Metzger, Chem. Rev. 2003, 103, 3803-3834.
W. Haiss, H. van Zalinge, S. J. Higgins, D. Bethell, H. Höbenreich, D. J. Schiffrin, R. J. Nichols, J. Am. Chem. Soc. 2003, 125, 15294-15295.
P. Damle, T. Rakshit, M. Paulsson, S. Datta, IEEE Trans. Nanotechnol. 2002, 1, 145-1153.
F. Chen, J. He, C. Nuckolls, T. Roberts, J. E. Klare, S. Lindsay, Nano Lett. 2005, 5, 503-506.
H. Song, Y. Kim, Y. Jang, H. Jeong, M. A. Reed, T. Lee, Nature 2009, 462, 1039-1043.
N. Xin, et al., Angew. Chem. Int. Ed. 2018, 130, 14222-14227.
E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, D. J. Nesbitt, Pure Appl. Chem. 2011, 83, 1637-1641.
G. R. Desiraju, P. S. Ho, L. Kloo, A. C. Legon, R. Marquardt, P. Metrangolo, P. Politzer, G. Resnati, K. Rissanen, Pure Appl. Chem. 2013, 85, 1711-1713.
C. B. Aakeroy, D. L. Bryce, G. R. Desiraju, A. Frontera, A. C. Legon, F. Nicotra, K. Rissanen, S. T. Scheiner, G. Terraneo, P. Metrangolo, et al., Pure Appl. Chem. 2019, 91, 1889-1892.
A. Bauzá, S. K. Seth, A. Frontera, Coord. Chem. Rev. 2019, 384, 107-125109.
S. Scheiner, Acc. Chem. Res. 2013, 46, 280-288.
R. Thakuria, N. K. Nath, B. K. Saha, Cryst. Growth Des. 2019, 19, 523-528;
X. Lucas, A. Bauza, A. Frontera, D. Quinonero, Chem. Sci. 2016, 7, 1038-1050.
J. S. Murray, P. Lane, T. Clark, K. E. Riley, P. Politzer, J. Mol. Model. 2012, 18, 541-548.
P. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys. 2013, 15, 11178-11189.
I. Alkorta, J. Elgeuro, J. E. D. Bene, O. Mó, M. M. Montero-Campillo, M. Yáñez, J. Phys. Chem. A 2020, 124(28), 5871-5878;
M. M. Montero-Campillo, O. Mó O, M. Yáñez, I. Alkorta, J. Elguero, Adv. Inorg. Chem. 2019, 73, 73-121;
E. F. Villanueva, O. Mó, M. Yáñez, Phys. Chem. Chem. Phys. 2014, 16, 17531-17536.
A. Bauza, A. Frontera, Chem. Eur. J. 2017, 23, 5375-5380.
M. Marin-Luna, I. Alkorta, J. Elguero, Tetrahedron 2016, 72, 1978-1983.
P. I. Hanson, S. W. Whiteheart, Nat. Rev. Mol. Cell Biol. 2005, 6, 519-529.
M. Yáñez, P. Sanz, O. Mo, I. Alkorta, J. Elguero, J. Chem. Theory Comput. 2009, 5, 2763-2771.
O. Mo, M. Yáñez, I. Alkorta, J. Elguero, Mol. Phys. 2014, 112, 592-600.
S. Bhattarai, D. Sutradhar, T. Zeegers-Huyskens, A. K. Chandra, ChemistrySelect 2021, 6, 7514-7524.
S. Bhattarai, D. Sutradhar, A. K. Chandra, ChemPhysChem 2022, 23, e202200146 (1-9).
M. Liu, L. Yang, Q. Li, W. Li, J. Cheng, B. Xiao, X. Yu, J. Mol. Model. 2016, 22, 1-10.
A. Zhong, D. Chen, R. Li, Chem. Phys. Lett. 2015, 633, 265-272.
M. Yáñez, O. Mo, I. Alkorta, J. Elguero, Chem. Eur. J. 2013, 19, 11637-11643.
I. Alkorta, J. Elguero, M. Yanez, O. Mo, Phys. Chem. Chem. Phys. 2014, 16, 4305-4312.
J. Casals-Sainz, F. Jimenez-Gravalos, A. Costales, E. Francisco, A. M. Pendas, J. Phys. Chem. A 2018, 122, 849-858.
K. K. Ray, G. Campillo-Alvarado, H. Morales-Rojas, H. Hopfl, L. R. MacGillivray, A. V. Tivanski, Cryst. Growth Des. 2020, 20, 3-8;
W. Zhu, R. Zheng, Y. Zhen, Z Yu, H. Dong, H. Fu, Q. Shi, W. Hu, J. Am. Chem. Soc. 2015, 137, 11038-11046.
J. Zhang, J, Jin, H. Xu, J. Mater. Chem. C 2018, 6, 3485-3498.
M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 1990, 166, 281-289.
S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553-566.
A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899-926.
J. D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
R. F. W. Bader, Atoms in Molecules: A Quantum Theory, 1st ed.; The International Series of Monographs on Chemistry 22; Oxford University Press: Oxford, UK, 1994.
J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A. Evangelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L. Abrams, et al., Wiley Interdiscp. Rev. Comput. Mol. Sci. 2012, 2, 556-565.
B. Jeziorski, R. Moszynski, A. Ratkiewicz, S. Rybak, K. Szalewicz, H. L. Williams, Methods and Techniques in Com-putational Chemistry: METEC-94; STEF: Cagliari, Italy, 1993.
F. A. Bulat, A. Toro-Labbé, T. Brinck, J. S. Murray, P. Politzer, J. Mol. Model. 2010, 16, 1679-1691.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al. GAUSSIAN 09, Revision C.01; Gaussian, Inc.: Walling-ford, CT, USA, 2009.
C. Hermann, L. Gross, T. Steenbock, G. C. Solomon, Artaios-A Code for Postprocessing Quantum Chemical Electronic Structure Calculations; 2010-2014. http://www.chemie.uni-hamburg.de/ac/herrmann/software/index.html.
C. Herrmann, G. C. Solomon, J. E. Subotnik, V. Mujica, M. A. Ratner, J. Chem. Phys. 2010, 132, 024103.
Y. Tsuji, A. Staykov, K. Yoshizawa, J. Am. Chem. Soc. 2011, 133, 5955.
Z.-L. Li, G.-P. Zhang, C.-K. Wang, J. Phys. Chem. C 2011, 115, 15586.
L. Lin, J. Jiang, Y. Luo, Physica E 2013, 47, 167.
C. Benesch, M. Čížek, J. Klimeš, I. Kondov, M. Thoss, W. Domcke, J. Phys. Chem. C 2008, 112(26), 9880.
L.-L. Lin, J.-C. Leng, X.-N. Song, Z.-L. Li, Y. Luo, C.-K. Wang, J. Phys. Chem. C 2009, 113, 14474.
M. E. Alikhani, J. Mol. Model. 2020, 26, 94 (1-11).
I. Alkorta, J. Elguero, O. Mo, M. Yanez, J. E. D. Bene, Phys. Chem. Chem. Phys. 2015, 17, 2259-2267.
O. Mo, M. Yańez, I. Alkorta, J. Elguero, J. Chem. Theory Comput. 2012, 8, 2293-2300.
I. Alkorta, A. C. Legon, Inorganics 2019, 7, 35 (1-14).
K. Eskandari, Comput. Theor. Chem. 2016, 1090, 74-79.
M. Marin-Luna, I. Alkorta, J. Elguero, O. Mo, M. Yanez, Molecules 2015, 20, 9961-9976.
I. Alkorta, J. Elguero, J. M. Oliva-Enrich, M. Yáñez, O. Mó, Molecules 2020, 25, 5876 (1-13).
A. Martin-Somer, A. Lamsabhi, O. Mo, M. Yanez, Comput. Theor. Chem. 2012, 998, 74-79.
R. L. Carroll, C. B. Gorman, Angew. Chem. Int. Ed. 2002, 41, 4379-4399.
C. Joachim, J. K. Gimzewski, A. Aviram, Nature 2000, 408, 541-548.
A. Sarmah, A. Wasfi, P. Hobza, N. Tit, Chem. Mater. 2021, 33, 8786-8799.
A. Sarmah, P. Hobza, Nanoscale Adv. 2020, 2, 2907-2913.
S. Datta, W. Tian, W. Hong, H. Seunghun, R. Reifenberger, J. I. Henderson, C. P. Kubiak, Phys. Rev. Lett. 1997, 79, 2530-2533.
R. M. Metzger, Chem. Rev. 2003, 103, 3803-3834.
H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, P. L. McEuen, Nature 2000, 407, 57-60.
J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, D. C. Ralph, Nature 2002, 417, 722-725.
W. J. Liang, M. P. Shores, M. Bockrath, J. R. Long, H. Park, Nature 2002, 417, 725-729.
S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Bredas, N. Stuhr-Hansen, P. Hedegard, T. Bjornholm, Nature 2003, 425, 698-701.
L. Meng, N. Xin, C. Hu, et al., Nat. Commun. 2019, 10, 1450.
N. Zhang, W. Y. Lo, Z. Cai, L. Li, L. Yu, Nano Lett. 2017, 17, 308-312.
C. Herrmann, M. Reiher, B. A. Hess, J. Chem. Phys. 2005, 122, 034102-034110.
S. Datta, Quantum Transport: Atom to Transistor (Cambridge Univ. Press, 2005).
E. T. Chernick, Q. Mi, R. F. Kelley, E. A. Weiss, B. A. Jones, T. J. Marks, M. A. Ratner, M. R. Wasielewski, J. Am. Chem. Soc. 2006, 128, 4356-4364.
I. Shokaryev, A. J. C. Buurma, O. D. Jurchescu, M. A. Uijttewaal, G. A. de Wijs, G. A. T. T. M. Palstra, R. A. Groot, J. Phys. Chem. A 2008, 112, 2497-2502.
L. Zhu, Y. Yi, Y. Li, E. G. Kim, V. Coropceanu, J. L. Bredas, J. Am. Chem. Soc. 2012, 134, 2340-2347.
A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 5397-5403.
T. Lu, F. W. Chen, Acta Phys. Chim. Sin. 2011, 27, 2786-2792.
Reliable Dimerization Energies for Modeling of Supramolecular Junctions