Comparison of the Effect on Vessel Density and RNFL between Carteolol and Latanoprost
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35887923
PubMed Central
PMC9320285
DOI
10.3390/jcm11144159
PII: jcm11144159
Knihovny.cz E-zdroje
- Klíčová slova
- OCTA, RNFL, hypertensive glaucoma, treatment with carteolol and latanoprost, vessel density,
- Publikační typ
- časopisecké články MeSH
The aim of the study was to compare the treatment of hypertensive glaucoma (HTG) in the early stages with carteolol and latanoprost by assessing the change in vessel density (VD) and retinal nerve fibre layer (RNFL). Methods: The first group with diagnosed HTG consisted of 46 eyes treated with carteolol; the second group consisted of 52 eyes treated with latanoprost. The following examinations were evaluated in all patients: intraocular pressure (IOP), retinal nerve fibre layer (RNFL), vessel density (VD) and visual field examination (glaucoma fast threshold test). The results were compared before treatment and 3 months after treatment. Results: There was no difference in the overall visual field defect (OD) between groups before treatment. After treatment, there was a decrease in IOP in both groups (carteolol-treated group had a mean decrease of 5.8 mmHg and latanoprost-treated eyes had a mean decrease of 7 mmHg). This difference was not statistically significant (p = 0.133). No similar difference was observed for RNFL (p = 0.161). In contrast, the change in the VD parameter was statistically significant between groups (p < 0.05), with a greater difference observed in the carteolol-treated group of eyes. Carteolol had a better effect on the VD.
Zobrazit více v PubMed
Kang J.M., Tanna A.P. Glaucoma. Med. Clin. North Am. 2021;105:493–510. doi: 10.1016/j.mcna.2021.01.004. PubMed DOI
Shen J., Wang Y., Yao K. Protection of retinal ganglion cells in glaucoma: Current status and future. Exp. Eye Res. 2021;205:108506. doi: 10.1016/j.exer.2021.108506. PubMed DOI
Cvenkel B., Kolko M. Current Medical Therapy and Future Trends in the Management of Glaucoma Treatment. J. Ophthalmol. 2020;2020:6138132. doi: 10.1155/2020/6138132. PubMed DOI PMC
Lee D.A., Higginbotham E.J. Glaucoma and its treatment: A review. Am. J. Health Syst. Pharm. 2005;62:691–699. doi: 10.1093/ajhp/62.7.691. PubMed DOI
Hoyng P.F., van Beek L.M. Pharmacological therapy for glaucoma: A review. Drugs. 2000;59:411–434. doi: 10.2165/00003495-200059030-00003. PubMed DOI
Li T., Lindsley K., Rouse B., Hong H., Shi Q., Friedman D.S., Wormald R., Dickersin K. Comparative effectiveness of first-line medications for primary open-angle glaucoma: A systematic review and network meta-analysis. Ophthalmology. 2016;123:129–140. doi: 10.1016/j.ophtha.2015.09.005. PubMed DOI PMC
Li F., Huang W., Zhang X. Efficacy and safety of different regimens for primary open-angle glaucoma or ocular hypertension: A systematic review and network meta-analysis. Acta Ophthalmol. 2018;96:e277–e284. doi: 10.1111/aos.13568. PubMed DOI PMC
Perry C.M., McGavin J.K., Culy C.R., Ibbotson T. Latanoprost: An update of its use in glaucoma and ocular hypertension. Drugs Aging. 2003;20:597–630. doi: 10.2165/00002512-200320080-00005. PubMed DOI
Coakes R.L., Brubaker R.F. The mechanism of timolol in lowering intraocular pressure. In the normal eye. Arch. Ophthalmol. 1978;96:2045–2048. doi: 10.1001/archopht.1978.03910060433007. PubMed DOI
Weinreb R.N., Aung T., Medeiros F.A. The pathophysiology and treatment of glaucoma: A review. JAMA. 2014;311:1901–1911. doi: 10.1001/jama.2014.3192. PubMed DOI PMC
Matsuo M., Kuse Y., Takahashi K., Kuwahara K., Tanito M., Kaidzu S., Shimazawa M., Hara H., Ohira A. Carteolol hydrochloride reduces visible light-induced retinal damage in vivo and BSO/glutamate-induced oxidative stress in vitro. J. Pharmacol. Sci. 2019;139:84–90. doi: 10.1016/j.jphs.2018.11.010. PubMed DOI
Maresova K., Lestak J., Fus M., Weissova I. Effect of prostaglandins and beta blockers on progression of hypertensive and normotensive glaucomas. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2021;165:189–191. doi: 10.5507/bp.2020.011. PubMed DOI
Lestak J., Nutterova E., Bartosova Rozsival P. The Visual Field in Normal Tension and Hyper Tension Glaukoma. IJSR. 2014;3:49–51.
Morgan J.E., Uchida H., Caprioli J. Retinal ganglion cell death in experimental glaucoma. Br. J. Ophthalmol. 2000;84:303–310. doi: 10.1136/bjo.84.3.303. PubMed DOI PMC
Morgan J.E. Retinal ganglion cell shrinkage in glaucoma. J. Glaucoma. 2002;11:365–370. doi: 10.1097/00061198-200208000-00015. PubMed DOI
Naskar R., Wissing M., Thanos S. Detection of Early Neuron Degeneration and Accompanying Microglial Responses in the Retina of a Rat Model of Glaucoma. Investig. Ophthalmol. Vis. Sci. 2002;43:2962–2968. PubMed
Shou T., Liu J., Wang W., Zhou Y., Zhao K. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Investig. Ophthalmol. Vis. Sci. 2003;44:3005–3010. doi: 10.1167/iovs.02-0620. PubMed DOI
Soto I., Oglesby E., Buckingham B.P., Son J.L., Roberson E.D.O., Steele M.R., Inman D.M., Vetter M.L., Horner P.J., Marsh-Armstrong N. Retinal Ganglion Cells Downregulate Gene Expression and Lose Their Axons within the Optic Nerve Head in a Mouse Glaucoma Model. J. Neurosci. 2008;28:548–561. doi: 10.1523/JNEUROSCI.3714-07.2008. PubMed DOI PMC
Kral J., Lestak J., Nutterová E. OCT angiography, RNFL and visual field at different values of intraocular pressure. Biomed Rep. 2022;16:36. doi: 10.3892/br.2022.1519. PubMed DOI PMC
Lešták J., Fůs M. Visual field assessment in hypertension glaucoma. Cesk. Slov. Oftalmol. 2021;77:20–24. doi: 10.31348/2021/X02. PubMed DOI
Curcio C.A., Allen K.A. Topography of ganglion cells in human retina. J. Comp. Neurol. 1990;300:5–25. doi: 10.1002/cne.903000103. PubMed DOI
Kerrigan-Baumrind L.A., Quigley H.A., Pease M.E., Kerrigan D.F., Mitchell R.S. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investig. Ophthalmol. Vis. Sci. 2000;41:741–748. PubMed
Tatham A.J., Weinreb R.N., Medeiros F.A. Strategies for improving early detection of glaucoma: The combined structure-function index. Clin. Ophthalmol. 2014;8:611–621. PubMed PMC
Harwerth R.S., Vilupuru A.S., Rangaswamy N.V., Smith E.L., III The relationship between nerve fiber layer and perimetry measurements. Investig. Ophthalmol. Vis. Sci. 2007;48:763–773. doi: 10.1167/iovs.06-0688. PubMed DOI
Marquis R.E., Whitson J.T. Management of glaucoma: Focus on pharmacological therapy. Drugs Aging. 2005;22:1–21. doi: 10.2165/00002512-200522010-00001. PubMed DOI
Díaz F., Villena A., Vidal L., Moreno M., García-Campos J., Pérez de Vargas I. Experimental model of ocular hypertension in the rat: Study of the optic nerve capillaries and action of hypotensive drugs. Investig. Ophthalmol. Vis. Sci. 2010;51:946–951. doi: 10.1167/iovs.09-3667. PubMed DOI
Villena A., Diaz F., Vidal L., Moreno M., Garcia-Campos J., Perez de Vargas I. Study of the effects of ocular hypotensive drugs on number of neurons in the retinal ganglion layer in a rat experimental glaucoma. Eur. J. Ophthalmol. 2009;19:963–970. doi: 10.1177/112067210901900611. PubMed DOI
Liu C., Umapathi R.M., Atalay E., Schmetterer L., Husain R., Boey P.Y., Aung T., Nongpiur M.E. The Effect of Medical Lowering of Intraocular Pressure on Peripapillary and Macular Blood Flow as Measured by Optical Coherence Tomography Angiography in Treatment-naive Eyes. J. Glaucoma. 2021;30:465–472. doi: 10.1097/IJG.0000000000001828. PubMed DOI
Yarmohammadi A., Zangwill L.M., Diniz-Filho A., Suh M.H., Yousefi S., Saunders L.J., Belghith A., Manalastas P.I., Medeiros F.A., Weinreb R.N. Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology. 2016;123:2498–2508. doi: 10.1016/j.ophtha.2016.08.041. PubMed DOI PMC
Triolo G., Rabiolo A., Shemonski N.D., Fard A., Di Matteo F., Sacconi R., Bettin P., Magazzeni S., Querques G., Vazquez L.E., et al. Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients. Investig. Ophthalmol. Vis. Sci. 2017;58:5713–5722. doi: 10.1167/iovs.17-22865. PubMed DOI
Zhang S., Wu C., Liu L., Jia Y., Zhang Y., Zhang H., Zhong Y., Huang D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Primary Angle-Closure Glaucoma. Am. J. Ophthalmol. 2017;182:194–200. doi: 10.1016/j.ajo.2017.07.024. PubMed DOI PMC
Holló G. Influence of Large Intraocular Pressure Reduction on Peripapillary OCT Vessel Density in Ocular Hypertensive and Glaucoma Eyes. J. Glaucoma. 2017;26:e7–e10. doi: 10.1097/IJG.0000000000000527. PubMed DOI
Patel N., McAllister F., Pardon L., Harwerth R. The effects of graded intraocular pressure challenge on the optic nerve head. Exp. Eye Res. 2018;169:79–90. doi: 10.1016/j.exer.2018.01.025. PubMed DOI PMC
Alnawaiseh M., Lahme L., Eter N., Mardin C. Optical coherence tomography angiography: Value for glaucoma diagnostics. Ophthalmologe. 2019;116:602–609. doi: 10.1007/s00347-018-0815-9. PubMed DOI
Kwon H.J., Kwon J., Sung K.R. Additive Role of Optical Coherence Tomography Angiography Vessel Density Measurements in Glaucoma Diagnoses. Korean J. Ophthalmol. 2019;33:315–325. doi: 10.3341/kjo.2019.0016. PubMed DOI PMC
Ma Z., Qiu W., Zhou D., Yang W., Pan X., Chen H. Changes in vessel density of the patients with narrow antenior chamber after an acute intraocular pressure elevation observed by OCT angiography. BMC Ophthalmol. 2019;19:132. doi: 10.1186/s12886-019-1146-6. PubMed DOI PMC
Tamaki Y., Tomita K., Araie M., Tomidokoro A., Nagahara M. Effect of topical carteolol on tissue circulation in rabbit optic nerve head evaluated with the laser speckle microcirculation analyser. Nippon Ganka Gakkai Zasshi. 1995;99:895–900. PubMed
Tamaki Y., Araie M., Tomita K., Tomidokoro A., Nagahara M. Effects of topical adrenergic agents on tissue circulation in rabbit and human optic nerve head evaluated with laser speckle tissue circulation analyzer. Surv. Ophthalmol. 1997;42((Suppl. 1)):S52–S63. doi: 10.1016/S0039-6257(97)80027-6. PubMed DOI
Feher J., Pescosolido N., Tranquilli Leali F.M., Cavalloti C. Microvessels of the human optic nerve head: Ultrastructural and radioreceptorial changes in eyes with increased IOP. Can. J. Ophthalmol. 2005;40:492–498. doi: 10.1016/S0008-4182(05)80012-2. PubMed DOI
European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br. J. Ophthalmol. 2021;105((Suppl. 1)):1–169. doi: 10.1136/bjophthalmol-2021-egsguidelines. PubMed DOI