Axons of retinal ganglion cells on the optic nerve disc following vessel density correction at different IOP values
Status PubMed-not-MEDLINE Jazyk angličtina Země Řecko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37206573
PubMed Central
PMC10189755
DOI
10.3892/etm.2023.11960
PII: ETM-25-6-11960
Knihovny.cz E-zdroje
- Klíčová slova
- intraocular pressure, ocular hypertension, optical coherence tomography with angiography, retinal nerve fiber layer, vessel density,
- Publikační typ
- časopisecké články MeSH
The present study aimed to determine how the vascular density (VD) in each segment peripapillary influences the retinal nerve fiber layer (RNFL) and to eliminate its contribution to RNFL in pathological intraocular pressure (IOP). In a cohort of 69 subjects (mean age, 45±6 years old) with untreated ocular hypertension (122 eyes in total) enrolled in this study, Ocular Response Analyser IOP was measured during routine outpatient care. Its value was >21 (range, 21-36) mmHg in all eyes. Furthermore, peripapillary VD and RNFL were measured using optical coherence tomography in the following eight segments: Inferior temporal (segment 1); temporal inferior (segment 2); temporal superior (segment 3); superior temporal (segment 4); superior nasal (segment 5); nasal superior (segment 6); nasal inferior (segment 7); and inferior nasal (segment 8). The visual field examination was performed with the fast threshold glaucoma program using the Medmont M 700. The overall defect was evaluated. Person's correlation coefficient was used to assess the correlation between VD and IOP. The largest changes were observed in peripapillary segments 1, 4, 5, 6, 7 and 8. The second part of the work was to eliminate the contribution of VD to RNFL. The partial correlation coefficient r was used to adjust RNFL from VD to assess the dependence between the selected parameters. The largest changes in RNFL were in segments 5 and 8 after they had been 'cleaned' of peripapillary VD. In conclusion, the present study revealed that the largest changes in RNFL after VD adjustment were observed for the incipient hypertensive glaucoma in segments 5 and 8.
Zobrazit více v PubMed
Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;21:1322–1332. doi: 10.1016/j.ophtha.2014.01.021. PubMed DOI PMC
Kral J, Lestak J, Nutterova E. OCT angiography, RNFL and visual field at different values of intraocular pressure. Biomed Rep. 2022;16(36) doi: 10.3892/br.2022.1519. PubMed DOI PMC
Lešták J, Fůs M, Král J. The Relationship Between the Thickness of cpRNFL in Segments and Intraocular Pressure. Clin Ophthalmol. 2022;16:3673–3679. doi: 10.2147/OPTH.S388936. PubMed DOI PMC
Choi J, Kook MS. Systemic and ocular hemodynamic risk factors in glaucoma. Biomed Res Int. 2015;2015(141905) doi: 10.1155/2015/141905. PubMed DOI PMC
Siesky B, Harris A, Vercellin ACV, Guidoboni G, Tsai JC. Ocular blood flow as it relates to race and disease on glaucoma. Adv Ophthalmol Optom. 2021;6:245–262. doi: 10.1016/j.yaoo.2021.04.016. PubMed DOI PMC
Lestak J, Fus M, Rybar M, Benda A. OCTA and doppler ultrasound in primary open-angle glaucoma and normal-tension glaucoma. Life. 2023;13(610) doi: 10.3390/life13030610. PubMed DOI PMC
Nakazawa T. Ocular blood flow and influencing factors for glaucoma. Asia Pac J Ophthalmol (Phila) 2016;5:38–44. doi: 10.1097/APO.0000000000000183. PubMed DOI
Lešták J, Fůs M, Benda A, Bartošová L, Marešová K. OCT angiography and doppler ultrasound in hypertension glaucoma. Cesk Slov Oftalmol. 2021;77:130–133. doi: 10.31348/2021/15. PubMed DOI
Chen X, Hong Y, Di H, Wu Q, Zhang D, Zhang C. Change of retinal vessel density after lowering intraocular pressure in ocular hypertension. Front Med (Lausanne) 2021;8(730327) doi: 10.3389/fmed.2021.730327. PubMed DOI PMC
Shin JW, Sung KR, Uhm KB, Jo J, Moon Y, Song MK, Song JY. Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2017;58:5993–5999. doi: 10.1167/iovs.17-22787. PubMed DOI
Park HL, Hong KE, Shin DY, Jung Y, Kim EK, Park CK. Microvasculature recovery detected using optical coherence tomography angiography and the rate of visual field progression after glaucoma surgery. Invest Ophthalmol Vis Sci. 2021;62(17) doi: 10.1167/iovs.62.15.17. PubMed DOI PMC
Zéboulon P, Lévêque PM, Brasnu E, Aragno V, Hamard P, Baudouin C, Labbé A. Effect of surgical intraocular pressure lowering on peripapillary and macular vessel density in glaucoma patients: An optical coherence tomography angiography study. J Glaucoma. 2017;26:466–472. doi: 10.1097/IJG.0000000000000652. PubMed DOI
Díaz F, Villena A, Vidal L, Moreno M, García-Campos J, Pérez de Vargas I. Experimental model of ocular hypertension in the rat: Study of the optic nerve capillaries and action of hypotensive drugs. Invest Ophthalmol Vis Sci. 2010;51:946–951. doi: 10.1167/iovs.09-3667. PubMed DOI
Wang X, Chen J, Kong X, Sun X. Immediate changes in peripapillary retinal vasculature after intraocular pressure elevation -an optical coherence tomography angiography study. Curr Eye Res. 2020;45:749–756. doi: 10.1080/02713683.2019.1695843. PubMed DOI
Tsuda Y, Nakahara T, Ueda K, Mori A, Sakamoto K, Ishii K. Effect of nafamostat on N-methyl-D-aspartate-induced retinal neuronal and capillary degeneration in rats. Biol Pharm Bull. 2012;35:2209–2213. doi: 10.1248/bpb.b12-00644. PubMed DOI
Grewer C, Gameiro A, Zhang Z, Zhen T, Braams S, Rauen T. Glutamate forward and reverrse transport: From molecular mechanism to transporter-mediated release after ischemia. IUBMB Life. 2008;60:609–619. doi: 10.1002/iub.98. PubMed DOI PMC
Vorwerk CK, Gorla MS, Dreyer EB. An experimental basis for implicating excitotoxicity in glaucomatous optic neuropathy. Surv Ophthalmol. 1999;43 (Suppl 1):S142–S150. doi: 10.1016/s0039-6257(99)00017-x. PubMed DOI
Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25. doi: 10.1002/cne.903000103. PubMed DOI
Morgan JE, Uchida H, Caprioli J. Retinal ganglion cell death in experimental glaucoma. Br J Ophthalmol. 2000;84:303–310. doi: 10.1136/bjo.84.3.303. PubMed DOI PMC
Morgan JE. Retinal ganglion cell shrinkage in glaucoma. J Glaucoma. 2002;11:365–370. doi: 10.1097/00061198-200208000-00015. PubMed DOI
Shou T, Liu J, Wang W, Zhou Y, Zhao K. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci. 2003;44:3005–3010. doi: 10.1167/iovs.02-0620. PubMed DOI
Weber AJ, Kaufman PL, Hubbard WC. Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci. 1998;39:2304–2320. PubMed
Naskar R, Wissing M, Thanos S. Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci. 2002;43:2962–2968. PubMed
Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology. 1988;95:357–363. doi: 10.1016/s0161-6420(88)33176-3. PubMed DOI
Hood DC, Fortune B, Arthur SN, Xing D, Salant JA, Ritch R, Liebmann JM. Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography. J Glaucoma. 2008;17:519–528. doi: 10.1097/IJG.0b013e3181629a02. PubMed DOI PMC
Patel N, Luo X, Wheat JL, Harwerth RS. Retinal nerve fiber layer assessment: Area versus thickness measurements from elliptical scans centered on the optic nerve. Invest Ophthalmol Vis Sci. 2011;52:2477–2489. doi: 10.1167/iovs.10-6105. PubMed DOI PMC
Pereira I, Weber S, Holzer S, Resch H, Kiss B, Fischer G, Vass C. Correlation between retinal vessel density profile and circumpapillary RNFL thickness measured with Fourier-domain optical coherence tomography. Br J Ophthalmol. 2014;98:538–543. doi: 10.1136/bjophthalmol-2013-303910. PubMed DOI
Allegrini D, Montesano G, Fogagnolo P, Pece A, Riva R, Romano MR, Rossetti L. The volume of peripapillary vessels within the retinal nerve fibre layer: An optical coherence tomography angiography study of normal subjects. Br J Ophthalmol. 2018;102:611–621. doi: 10.1136/bjophthalmol-2017-310214. PubMed DOI
Distal Nasal Part of the Visual Field and RNFL in Primary Open-Angle Glaucoma