Axons of retinal ganglion cells on the optic nerve disc following vessel density correction at different IOP values

. 2023 Jun ; 25 (6) : 261. [epub] 20230419

Status PubMed-not-MEDLINE Jazyk angličtina Země Řecko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37206573

The present study aimed to determine how the vascular density (VD) in each segment peripapillary influences the retinal nerve fiber layer (RNFL) and to eliminate its contribution to RNFL in pathological intraocular pressure (IOP). In a cohort of 69 subjects (mean age, 45±6 years old) with untreated ocular hypertension (122 eyes in total) enrolled in this study, Ocular Response Analyser IOP was measured during routine outpatient care. Its value was >21 (range, 21-36) mmHg in all eyes. Furthermore, peripapillary VD and RNFL were measured using optical coherence tomography in the following eight segments: Inferior temporal (segment 1); temporal inferior (segment 2); temporal superior (segment 3); superior temporal (segment 4); superior nasal (segment 5); nasal superior (segment 6); nasal inferior (segment 7); and inferior nasal (segment 8). The visual field examination was performed with the fast threshold glaucoma program using the Medmont M 700. The overall defect was evaluated. Person's correlation coefficient was used to assess the correlation between VD and IOP. The largest changes were observed in peripapillary segments 1, 4, 5, 6, 7 and 8. The second part of the work was to eliminate the contribution of VD to RNFL. The partial correlation coefficient r was used to adjust RNFL from VD to assess the dependence between the selected parameters. The largest changes in RNFL were in segments 5 and 8 after they had been 'cleaned' of peripapillary VD. In conclusion, the present study revealed that the largest changes in RNFL after VD adjustment were observed for the incipient hypertensive glaucoma in segments 5 and 8.

Zobrazit více v PubMed

Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;21:1322–1332. doi: 10.1016/j.ophtha.2014.01.021. PubMed DOI PMC

Kral J, Lestak J, Nutterova E. OCT angiography, RNFL and visual field at different values of intraocular pressure. Biomed Rep. 2022;16(36) doi: 10.3892/br.2022.1519. PubMed DOI PMC

Lešták J, Fůs M, Král J. The Relationship Between the Thickness of cpRNFL in Segments and Intraocular Pressure. Clin Ophthalmol. 2022;16:3673–3679. doi: 10.2147/OPTH.S388936. PubMed DOI PMC

Choi J, Kook MS. Systemic and ocular hemodynamic risk factors in glaucoma. Biomed Res Int. 2015;2015(141905) doi: 10.1155/2015/141905. PubMed DOI PMC

Siesky B, Harris A, Vercellin ACV, Guidoboni G, Tsai JC. Ocular blood flow as it relates to race and disease on glaucoma. Adv Ophthalmol Optom. 2021;6:245–262. doi: 10.1016/j.yaoo.2021.04.016. PubMed DOI PMC

Lestak J, Fus M, Rybar M, Benda A. OCTA and doppler ultrasound in primary open-angle glaucoma and normal-tension glaucoma. Life. 2023;13(610) doi: 10.3390/life13030610. PubMed DOI PMC

Nakazawa T. Ocular blood flow and influencing factors for glaucoma. Asia Pac J Ophthalmol (Phila) 2016;5:38–44. doi: 10.1097/APO.0000000000000183. PubMed DOI

Lešták J, Fůs M, Benda A, Bartošová L, Marešová K. OCT angiography and doppler ultrasound in hypertension glaucoma. Cesk Slov Oftalmol. 2021;77:130–133. doi: 10.31348/2021/15. PubMed DOI

Chen X, Hong Y, Di H, Wu Q, Zhang D, Zhang C. Change of retinal vessel density after lowering intraocular pressure in ocular hypertension. Front Med (Lausanne) 2021;8(730327) doi: 10.3389/fmed.2021.730327. PubMed DOI PMC

Shin JW, Sung KR, Uhm KB, Jo J, Moon Y, Song MK, Song JY. Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2017;58:5993–5999. doi: 10.1167/iovs.17-22787. PubMed DOI

Park HL, Hong KE, Shin DY, Jung Y, Kim EK, Park CK. Microvasculature recovery detected using optical coherence tomography angiography and the rate of visual field progression after glaucoma surgery. Invest Ophthalmol Vis Sci. 2021;62(17) doi: 10.1167/iovs.62.15.17. PubMed DOI PMC

Zéboulon P, Lévêque PM, Brasnu E, Aragno V, Hamard P, Baudouin C, Labbé A. Effect of surgical intraocular pressure lowering on peripapillary and macular vessel density in glaucoma patients: An optical coherence tomography angiography study. J Glaucoma. 2017;26:466–472. doi: 10.1097/IJG.0000000000000652. PubMed DOI

Díaz F, Villena A, Vidal L, Moreno M, García-Campos J, Pérez de Vargas I. Experimental model of ocular hypertension in the rat: Study of the optic nerve capillaries and action of hypotensive drugs. Invest Ophthalmol Vis Sci. 2010;51:946–951. doi: 10.1167/iovs.09-3667. PubMed DOI

Wang X, Chen J, Kong X, Sun X. Immediate changes in peripapillary retinal vasculature after intraocular pressure elevation -an optical coherence tomography angiography study. Curr Eye Res. 2020;45:749–756. doi: 10.1080/02713683.2019.1695843. PubMed DOI

Tsuda Y, Nakahara T, Ueda K, Mori A, Sakamoto K, Ishii K. Effect of nafamostat on N-methyl-D-aspartate-induced retinal neuronal and capillary degeneration in rats. Biol Pharm Bull. 2012;35:2209–2213. doi: 10.1248/bpb.b12-00644. PubMed DOI

Grewer C, Gameiro A, Zhang Z, Zhen T, Braams S, Rauen T. Glutamate forward and reverrse transport: From molecular mechanism to transporter-mediated release after ischemia. IUBMB Life. 2008;60:609–619. doi: 10.1002/iub.98. PubMed DOI PMC

Vorwerk CK, Gorla MS, Dreyer EB. An experimental basis for implicating excitotoxicity in glaucomatous optic neuropathy. Surv Ophthalmol. 1999;43 (Suppl 1):S142–S150. doi: 10.1016/s0039-6257(99)00017-x. PubMed DOI

Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25. doi: 10.1002/cne.903000103. PubMed DOI

Morgan JE, Uchida H, Caprioli J. Retinal ganglion cell death in experimental glaucoma. Br J Ophthalmol. 2000;84:303–310. doi: 10.1136/bjo.84.3.303. PubMed DOI PMC

Morgan JE. Retinal ganglion cell shrinkage in glaucoma. J Glaucoma. 2002;11:365–370. doi: 10.1097/00061198-200208000-00015. PubMed DOI

Shou T, Liu J, Wang W, Zhou Y, Zhao K. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci. 2003;44:3005–3010. doi: 10.1167/iovs.02-0620. PubMed DOI

Weber AJ, Kaufman PL, Hubbard WC. Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci. 1998;39:2304–2320. PubMed

Naskar R, Wissing M, Thanos S. Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci. 2002;43:2962–2968. PubMed

Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology. 1988;95:357–363. doi: 10.1016/s0161-6420(88)33176-3. PubMed DOI

Hood DC, Fortune B, Arthur SN, Xing D, Salant JA, Ritch R, Liebmann JM. Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography. J Glaucoma. 2008;17:519–528. doi: 10.1097/IJG.0b013e3181629a02. PubMed DOI PMC

Patel N, Luo X, Wheat JL, Harwerth RS. Retinal nerve fiber layer assessment: Area versus thickness measurements from elliptical scans centered on the optic nerve. Invest Ophthalmol Vis Sci. 2011;52:2477–2489. doi: 10.1167/iovs.10-6105. PubMed DOI PMC

Pereira I, Weber S, Holzer S, Resch H, Kiss B, Fischer G, Vass C. Correlation between retinal vessel density profile and circumpapillary RNFL thickness measured with Fourier-domain optical coherence tomography. Br J Ophthalmol. 2014;98:538–543. doi: 10.1136/bjophthalmol-2013-303910. PubMed DOI

Allegrini D, Montesano G, Fogagnolo P, Pece A, Riva R, Romano MR, Rossetti L. The volume of peripapillary vessels within the retinal nerve fibre layer: An optical coherence tomography angiography study of normal subjects. Br J Ophthalmol. 2018;102:611–621. doi: 10.1136/bjophthalmol-2017-310214. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Distal Nasal Part of the Visual Field and RNFL in Primary Open-Angle Glaucoma

. 2024 ; 18 () : 1-7. [epub] 20240103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...