Silymarin Dehydroflavonolignans Chelate Zinc and Partially Inhibit Alcohol Dehydrogenase
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
(No. 18-00121S).
Czech Science Foundation
SVV 2020/260 414
Charles University
CZ.02.1.01/0.0/0.0/16_019/0000841
Ministry of Education, Youth and Sport, Czech Republic
CZ.02.1.01/0.0/0.0/16_017/0002682
Ministry of Education, Youth and Sport, Czech Republic
PubMed
34959790
PubMed Central
PMC8708252
DOI
10.3390/nu13124238
PII: nu13124238
Knihovny.cz E-zdroje
- Klíčová slova
- alcohol dehydrogenase, chelation, dehydrosilybin, docking, flavonolignans, glutamate dehydrogenase, silybin, zinc,
- MeSH
- alkoholdehydrogenasa antagonisté a inhibitory MeSH
- chelátory farmakologie MeSH
- flavonolignany farmakologie MeSH
- glutamátdehydrogenasa antagonisté a inhibitory MeSH
- koně MeSH
- kvasinky účinky léků MeSH
- silibinin farmakologie MeSH
- silymarin farmakologie MeSH
- zinek izolace a purifikace metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkoholdehydrogenasa MeSH
- chelátory MeSH
- flavonolignany MeSH
- glutamátdehydrogenasa MeSH
- silibinin MeSH
- silymarin MeSH
- zinek MeSH
Silymarin is known for its hepatoprotective effects. Although there is solid evidence for its protective effects against Amanita phalloides intoxication, only inconclusive data are available for alcoholic liver damage. Since silymarin flavonolignans have metal-chelating activity, we hypothesized that silymarin may influence alcoholic liver damage by inhibiting zinc-containing alcohol dehydrogenase (ADH). Therefore, we tested the zinc-chelating activity of pure silymarin flavonolignans and their effect on yeast and equine ADH. The most active compounds were also tested on bovine glutamate dehydrogenase, an enzyme blocked by zinc ions. Of the six flavonolignans tested, only 2,3-dehydroderivatives (2,3-dehydrosilybin and 2,3-dehydrosilychristin) significantly chelated zinc ions. Their effect on yeast ADH was modest but stronger than that of the clinically used ADH inhibitor fomepizole. In contrast, fomepizole strongly blocked mammalian (equine) ADH. 2,3-Dehydrosilybin at low micromolar concentrations also partially inhibited this enzyme. These results were confirmed by in silico docking of active dehydroflavonolignans with equine ADH. Glutamate dehydrogenase activity was decreased by zinc ions in a concentration-dependent manner, and this inhibition was abolished by a standard zinc chelating agent. In contrast, 2,3-dehydroflavonolignans blocked the enzyme both in the absence and presence of zinc ions. Therefore, 2,3-dehydrosilybin might have a biologically relevant inhibitory effect on ADH and glutamate dehydrogenase.
Zobrazit více v PubMed
Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition… and why does it matter? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI
Filippopoulou K., Papaevgeniou N., Lefaki M., Paraskevopoulou A., Biedermann D., Křen V., Chondrogianni N. 2,3-Dehydrosilybin A/B as a pro-longevity and anti-aggregation compound. Free Radic. Biol. Med. 2017;103:256–267. doi: 10.1016/j.freeradbiomed.2016.12.042. PubMed DOI
Tilley C., Deep G., Agarwal C., Wempe M.F., Biedermann D., Valentová K., Křen V., Agarwal R. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Mol. Carcinog. 2016;55:3–14. doi: 10.1002/mc.22253. PubMed DOI PMC
Wen Y.J., Zhou Z.Y., Zhang G.L., Lu X.X. Metal coordination protocol for the synthesis of-2,3-dehydrosilybin and 19-O-demethyl-2,3-dehydrosilybin from silybin and their antitumor activities. Tetrahedron Lett. 2018;59:1666–1669. doi: 10.1016/j.tetlet.2018.03.052. DOI
Jiang Z.R., Sekhon A., Oka Y., Chen G.L., Alrubati N., Kaur J., Orozco A., Zhang Q., Wang G.D., Chen Q.H. 23-O-Substituted-2,3-dehydrosilybins selectively suppress androgen receptor-positive LNCaP prostate cancer cell proliferation. Nat. Prod. Commun. 2020;15:1–10. doi: 10.1177/1934578X20922326. DOI
Gillessen A., Schmidt H.H. Silymarin as supportive treatment in liver diseases: A narrative review. Adv. Ther. 2020;37:1279–1301. doi: 10.1007/s12325-020-01251-y. PubMed DOI PMC
Ferenci P., Dragosics B., Dittrich H., Frank H., Benda L., Lochs H., Meryn S., Base W., Schneider B. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. J. Hepatol. 1989;9:105–113. doi: 10.1016/0168-8278(89)90083-4. PubMed DOI
Fehér J., Deák G., Müzes G., Láng I., Niederland V., Nékám K., Kárteszi M. Liver-protective action of silymarin therapy in chronic alcoholic liver diseases. Orv. Hetil. 1989;130:2723–2727. PubMed
Müzes G., Deák G., Láng I., Nékám K., Niederland V., Fehér J. Effect of silimarin (Legalon) therapy on the antioxidant defense mechanism and lipid peroxidation in alcoholic liver disease (double blind protocol) Orv. Hetil. 1990;131:863–866. PubMed
Crabb D.W., Matsumoto M., Chang D., You M. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc. Nutr. Soc. 2004;63:49–63. doi: 10.1079/PNS2003327. PubMed DOI
Crabb D.W., Liangpunsakul S. Acetaldehyde generating enzyme systems: Roles of alcohol dehydrogenase, CYP2E1 and catalase, and speculations on the role of other enzymes and processes. Novartis Found. Symp. 2007;285:4–16. doi: 10.1002/9780470511848.ch2. PubMed DOI
Jiang Y., Zhang T., Kusumanchi P., Han S., Yang Z., Liangpunsakul S. Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease. Biomedicines. 2020;8:50. doi: 10.3390/biomedicines8030050. PubMed DOI PMC
Kagi J.H., Vallee B.L. The role of zinc in alcohol dehydrogenase. V. The effect of metal-binding agents on the structure of the yeast alcohol dehydrogenase molecule. J. Biol. Chem. 1960;235:3188–3192. PubMed
Yang Y., Zhou H.M. Effect of zinc ions on conformational stability of yeast alcohol dehydrogenase. Biochemistry. 2001;66:47–54. doi: 10.1023/a:1002829628836. PubMed DOI
Tvrdý V., Catapano M.C., Rawlik T., Karlíčková J., Biedermann D., Křen V., Mladěnka P., Valentová K. Interaction of isolated silymarin flavonolignans with iron and copper. J. Inorg. Biochem. 2018;189:115–123. doi: 10.1016/j.jinorgbio.2018.09.006. PubMed DOI
Jörnvall H. Differences between alcohol dehydrogenases. Structural properties and evolutionary aspects. Eur. J. Biochem. 1977;72:443–452. doi: 10.1111/j.1432-1033.1977.tb11268.x. PubMed DOI
Vonwartburg J.P., Bethune J.L., Vallee B.L. Human liver--alcohol dehydrogenase. Kinetic and physicochemical properties. Biochemistry. 1964;3:1775–1782. doi: 10.1021/bi00899a033. PubMed DOI
Pietruszko R., Crawford K., Lester D. Comparison of substrate specificity of alcohol dehydrogenases from human liver, horse liver, and yeast towards saturated and 2-enoic alcohols and aldehydes. Arch. Biochem. Biophys. 1973;159:50–60. doi: 10.1016/0003-9861(73)90428-1. PubMed DOI
Petrásková L., Káňová K., Biedermann D., Křen V., Valentová K. Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3-dehydroflavonolignans in silymarin. Foods. 2020;9:116. doi: 10.3390/foods9020116. PubMed DOI PMC
Gažák R., Marhol P., Purchartová K., Monti D., Biedermann D., Riva S., Cvak L., Křen V. Large-scale separation of silybin diastereoisomers using lipases. Process Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI
Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI
Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednárová L., Křenková A., Kuzma M., Škuta C., et al. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI
Valentová K., Purchartová K., Rydlová L., Roubalová L., Biedermann D., Petrásková L., Křenková A., Pelantová H., Holečková-Moravcová V., Tesařová E., et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and properties. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC
Catapano M.C., Tvrdý V., Karlíčková J., Mercolini L., Mladěnka P. A simple, cheap but reliable method for evaluation of zinc chelating properties. Bioorg. Chem. 2018;77:287–292. doi: 10.1016/j.bioorg.2018.01.015. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Wang R., Lai L., Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 2002;16:11–26. doi: 10.1023/A:1016357811882. PubMed DOI
Schrödinger L.D. Pymol. [(accessed on 20 August 2021)]. Available online: http://www.pymol.org/pymol.
Bailey J., Powell L., Sinanan L., Neal J., Li M., Smith T., Bell E. A novel mechanism of V-type zinc inhibition of glutamate dehydrogenase results from disruption of subunit interactions necessary for efficient catalysis. FEBS J. 2011;278:3140–3151. doi: 10.1111/j.1742-4658.2011.08240.x. PubMed DOI PMC
Garcia J., Costa V.M., Carvalho A., Baptista P., de Pinho P.G., de Lourdes Bastos M., Carvalho F. Amanita phalloides poisoning: Mechanisms of toxicity and treatment. Food Chem. Toxicol. 2015;86:41–55. doi: 10.1016/j.fct.2015.09.008. PubMed DOI
Saller R., Brignoli R., Melzer J., Meier R. An updated systematic review with meta-analysis for the clinical evidence of silymarin. Forsch Komplementmed. 2008;15:9–20. doi: 10.1159/000113648. PubMed DOI
Vargas-Mendoza N., Madrigal-Santillán E., Morales-González A., Esquivel-Soto J., Esquivel-Chirino C., García-Luna Y.G.-R.M., Gayosso-de-Lucio J.A., Morales-González J.A. Hepatoprotective effect of silymarin. World J. Hepatol. 2014;6:144–149. doi: 10.4254/wjh.v6.i3.144. PubMed DOI PMC
Tuma D.J., Thiele G.M., Xu D., Klassen L.W., Sorrell M.F. Acetaldehyde and malondialdehyde react together to generate distinct protein adducts in the liver during long-term ethanol administration. Hepatology. 1996;23:872–880. doi: 10.1002/hep.510230431. PubMed DOI
Crabb D.W., Galli A., Fischer M., You M. Molecular mechanisms of alcoholic fatty liver: Role of peroxisome proliferator-activated receptor alpha. Alcohol. 2004;34:35–38. doi: 10.1016/j.alcohol.2004.07.005. PubMed DOI
Valenzuela A., Bustamante J.C., Videla C., Guerra R. Effect of silybin dihemisuccinate on the ethanol metabolizing systems of the rat liver. Cell Biochem. Funct. 1989;7:173–178. doi: 10.1002/cbf.290070304. PubMed DOI
Hsieh Y.L., Yeh Y.H., Lee Y.T., Huang C.Y. Protective effects of cholestin on ethanol induced oxidative stress in rats. J. Sci. Food Agric. 2015;95:799–808. doi: 10.1002/jsfa.6904. PubMed DOI
Nosova T., Jousimies-Somer H., Kaihovaara P., Jokelainen K., Heine R., Salaspuro M. Characteristics of alcohol dehydrogenases of certain aerobic bacteria representing human colonic flora. Alcohol Clin. Exp. Res. 1997;21:489–494. doi: 10.1111/j.1530-0277.1997.tb03795.x. PubMed DOI
Theorell H., Yonetani T., Sjöberg B. On the effects of some heterocyclic compounds on the enzymic activity of liver alcohol dehydrogenase. Acta Chem. Scand. 1969;23:255–260. doi: 10.3891/acta.chem.scand.23-0255. PubMed DOI
Bosron W.F., Li T.K. Catalytic properties of human liver alcohol dehydrogenase isoenzymes. Enzyme. 1987;37:19–28. doi: 10.1159/000469238. PubMed DOI
Pietruszko R. Human liver alcohol dehydrogenase—Inhibition of methanol activity by pyrazole, 4-methylpyrazole, 4-hydroxymethylpyrazole and 4-carboxypyrazole. Biochem. Pharmacol. 1975;24:1603–1607. doi: 10.1016/0006-2952(75)90087-8. PubMed DOI
Li T.K., Theorell H. Human liver alcohol dehydrogenase—Inhibition by pyrazole and pyrazole analogs. Acta Chem. Scand. 1969;23:892–902. doi: 10.3891/acta.chem.scand.23-0892. PubMed DOI
Theorell H., Yonetani T. Liver alcohol dehydrogenase-DNP-pyrazole complex: A model of a ternary intermediate in the enzyme reaction. Biochem. Z. 1963;338:537–553. PubMed
Xie P.T., Hurley T.D. Methionine-141 directly influences the binding of 4-methylpyrazole in human sigma sigma alcohol dehydrogenase. Protein Sci. 1999;8:2639–2644. doi: 10.1110/ps.8.12.2639. PubMed DOI PMC
Jörnvall H., Eklund H., Brändén C.I. Subunit conformation of yeast alcohol dehydrogenase. J. Biol. Chem. 1978;253:8414–8419. doi: 10.1016/S0021-9258(17)34307-7. PubMed DOI
Jörnvall H., Hempel J., von Bahr-Lindström H., Höög J.O., Vallee B.L. Alcohol and aldehyde dehydrogenases: Structures of the human liver enzymes, functional properties and evolutionary aspects. Alcohol Alcohol. Suppl. 1987;1:13–23. PubMed
Meeusen J.W., Nowakowski A., Petering D.H. Reaction of metal-binding ligands with the zinc proteome: Zinc sensors and N,N,N’,N’-tetrakis(2-pyridylmethyl)ethylenediamine. Inorg. Chem. 2012;51:3625–3632. doi: 10.1021/ic2025236. PubMed DOI PMC
Vimalraj S., Rajalakshmi S., Saravanan S., Raj Preeth D., Vasanthi R.L.A., Shairam M., Chatterjee S. Synthesis and characterization of zinc-silibinin complexes: A potential bioactive compound with angiogenic, and antibacterial activity for bone tissue engineering. Colloids Surf. B Biointerfaces. 2018;167:134–143. doi: 10.1016/j.colsurfb.2018.04.007. PubMed DOI
Lapouge C., Dangleterre L., Cornard J.P. Spectroscopic and theoretical studies of the Zn(II) chelation with hydroxyflavones. J. Phys. Chem. A. 2006;110:12494–12500. doi: 10.1021/jp064362q. PubMed DOI
De Souza R.F., De Giovani W.F. Synthesis, spectral and electrochemical properties of Al(III) and Zn(II) complexes with flavonoids. Spectrochim Acta A Mol. Biomol. Spectrosc. 2005;61:1985–1990. doi: 10.1016/j.saa.2004.07.029. PubMed DOI
Říha M., Karlíčková J., Filipský T., Macáková K., Rocha L., Bovicelli P., Silvestri I.P., Saso L., Jahodář L., Hrdina R., et al. In vitro evaluation of copper-chelating properties of flavonoids. RSC Adv. 2014;4:32628–32638. doi: 10.1039/C4RA04575K. DOI
Li M., Li C.H., Allen A., Stanley C.A., Smith T.J. The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch. Biochem. Biophys. 2012;519:69–80. doi: 10.1016/j.abb.2011.10.015. PubMed DOI PMC
Li M., Allen A., Smith T.J. High throughput screening reveals several new classes of glutamate dehydrogenase inhibitors. Biochemistry. 2007;46:15089–15102. doi: 10.1021/bi7018783. PubMed DOI PMC
Calani L., Brighenti F., Bruni R., Del Rio D. Absorption and metabolism of milk thistle flavanolignans in humans. Phytomedicine. 2012;20:40–46. doi: 10.1016/j.phymed.2012.09.004. PubMed DOI
Chu C., Tong S.S., Xu Y., Wang L., Fu M., Ge Y.R., Yu J.N., Xu X.M. Proliposomes for oral delivery of dehydrosilymarin: Preparation and evaluation in vitro and in vivo. Acta Pharmacol. Sin. 2011;32:973–980. doi: 10.1038/aps.2011.25. PubMed DOI PMC