Inhibitory Effects of Quercetin and Its Human and Microbial Metabolites on Xanthine Oxidase Enzyme
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
EFOP-3.6.1.-16-2016-00004
European Social Fund
PubMed
31159151
PubMed Central
PMC6600370
DOI
10.3390/ijms20112681
PII: ijms20112681
Knihovny.cz E-zdroje
- Klíčová slova
- 6-mercaptopurine, enzyme inhibition, pharmacokinetic interactions, quercetin metabolites, xanthine, xanthine oxidase,
- MeSH
- alopurinol chemie farmakologie MeSH
- inhibitory enzymů chemie metabolismus farmakologie MeSH
- katalýza MeSH
- lidé MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- oxidace-redukce MeSH
- quercetin analogy a deriváty chemie metabolismus farmakologie MeSH
- vazba proteinů MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- xanthin chemie farmakologie MeSH
- xanthinoxidasa antagonisté a inhibitory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alopurinol MeSH
- inhibitory enzymů MeSH
- quercetin MeSH
- xanthin MeSH
- xanthinoxidasa MeSH
Quercetin is an abundant flavonoid in nature and is used in several dietary supplements. Although quercetin is extensively metabolized by human enzymes and the colonic microflora, we have only few data regarding the pharmacokinetic interactions of its metabolites. Therefore, we investigated the interaction of human and microbial metabolites of quercetin with the xanthine oxidase enzyme. Inhibitory effects of five conjugates and 23 microbial metabolites were examined with 6-mercaptopurine and xanthine substrates (both at 5 μM), employing allopurinol as a positive control. Quercetin-3'-sulfate, isorhamnetin, tamarixetin, and pyrogallol proved to be strong inhibitors of xanthine oxidase. Sulfate and methyl conjugates were similarly strong inhibitors of both 6-mercaptopurine and xanthine oxidations (IC50 = 0.2-0.7 μM); however, pyrogallol inhibited xanthine oxidation (IC50 = 1.8 μM) with higher potency vs. 6-MP oxidation (IC50 = 10.1 μM). Sulfate and methyl conjugates were approximately ten-fold stronger inhibitors (IC50 = 0.2-0.6 μM) of 6-mercaptopurine oxidation than allopurinol (IC50 = 7.0 μM), and induced more potent inhibition compared to quercetin (IC50 = 1.4 μM). These observations highlight that some quercetin metabolites can exert similar or even a stronger inhibitory effect on xanthine oxidase than the parent compound, which may lead to the development of quercetin-drug interactions (e.g., with 6-mercaptopurin or azathioprine).
Department of Pharmacology University of Pécs Faculty of Pharmacy Szigeti út 12 H 7624 Pécs Hungary
János Szentágothai Research Center University of Pécs Ifjúság útja 20 H 7624 Pécs Hungary
Quadram Institute Bioscience Norwich Research Park Norwich NR4 7UA UK
Zobrazit více v PubMed
Formica J.V., Regelson W. Review of the biology of Quercetin and related bioflavonoids. Food Chem. Toxicol. 1995;12:1061–1080. doi: 10.1016/0278-6915(95)00077-1. PubMed DOI
Hollman P.C., De Vries J.H., Van Leeuwen S.D., Mengellers M.J., Katan M.B. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 1995;62:1276–1282. doi: 10.1093/ajcn/62.6.1276. PubMed DOI
Kelly G.S. Quercetin. Altern. Med. Rev. 2011;16:172–194. PubMed
Manach C., Texier O., Regerat F., Agullo G., Demigne C., Remesy C. Dietary quercetin is recovered in rat plasma as conjugated derivatives of isorhamnetin and quercetin. J. Nutr. Biochem. 1996;7:375–380. doi: 10.1016/S0955-2863(96)00058-7. DOI
Terao J., Murota K., Kawai Y. Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food Funct. 2011;2:11–17. doi: 10.1039/C0FO00106F. PubMed DOI
Del Rio D., Rodriguez-Mateos A., Spencer J.P.E., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013;18:1818–1892. doi: 10.1089/ars.2012.4581. PubMed DOI PMC
Mullen W., Edwards C.A., Crozier A. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br. J. Nutr. 2006;96:107–116. doi: 10.1079/BJN20061809. PubMed DOI
Conquer J.A., Maiani G., Azzini E., Raguzzini A., Holub B.J. Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J. Nutr. 1998;128:593–597. doi: 10.1093/jn/128.3.593. PubMed DOI
Rechner A.R., Kuhnle G., Bremner P., Hubbard G.P., Moore K.P., Rice-Evans C.A. The metabolic fate of dietary polyphenols in humans. Free Rad. Biol. Med. 2002;33:220–235. doi: 10.1016/S0891-5849(02)00877-8. PubMed DOI
Aura A.M. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev. 2008;3:407–429. doi: 10.1007/s11101-008-9095-3. DOI
Serra A., Macia A., Romero M.P., Reguant J., Ortega N., Motilva M.J. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem. 2012;130:383–393. doi: 10.1016/j.foodchem.2011.07.055. DOI
Day R.O., Graham G.G., Hicks M., McLachlan A.J., Stocker S.L., Williams K.M. Clinical pharmacokinetics and pharmacodynamics of allopurinol and oxypurinol. Clin. Pharmacokinet. 2007;46:623–644. doi: 10.2165/00003088-200746080-00001. PubMed DOI
Leong R.W., Gearry R.B., Sparrow M.P. Thiopurine hepatotoxicity in inflammatory bowel disease: The role for adding allopurinol. Expert Opin. Drug Saf. 2008;7:607–616. doi: 10.1517/14740338.7.5.607. PubMed DOI
Galbusera C., Orth P., Fedida D., Spector T. Superoxide radical production by allopurinol and xanthine oxidase. Biochem. Pharmacol. 2006;71:1747–1752. doi: 10.1016/j.bcp.2006.02.008. PubMed DOI
Berry C.E., Hare J.M. Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. J. Physiol. 2004;555:589–606. doi: 10.1113/jphysiol.2003.055913. PubMed DOI PMC
McLeod H.L. Clinically relevant drug-drug interactions in oncology. Br. J. Clin. Pharmacol. 1998;45:539–544. doi: 10.1046/j.1365-2125.1998.00719.x. PubMed DOI PMC
Lin C.M., Chen C.S., Chen C.T., Liang Y.C., Lin J.K. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem. Biophys. Res. Commun. 2002;294:162–172. doi: 10.1016/S0006-291X(02)00442-4. PubMed DOI
Van Hoorn D.E.C., Nijveldt R.J., Van Leeuwen P.A.M., Hofman Z., M’Rabet L., De Bont D.B.A., Van Norren K. Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids. Eur. J. Pharmacol. 2002;451:111–118. doi: 10.1016/S0014-2999(02)02192-1. PubMed DOI
Mladenka P., Zatloukalová L., Filipský T., Hrdina R. Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free Radic. Biol. Med. 2010;49:963–975. doi: 10.1016/j.freeradbiomed.2010.06.010. PubMed DOI
Iio M., Moriyama A., Matsumoto Y., Takaki N., Fukumoto M. Inhibition of Xanthine Oxidase by Flavonoids. Agric. Biol. Chem. 1985;49:2173–2176. doi: 10.1080/00021369.1985.10867027. DOI
Nagao A., Seki M., Kobayashi H. Inhibition of xanthine oxidase by flavonoids. Biosci. Biotechnol. Biochem. 1999;63:1787–1790. doi: 10.1271/bbb.63.1787. PubMed DOI
Miron A., Aprotosoaie A.C., Trifan A., Xiao J. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann. N. Y. Acad. Sci. 2017;1398:152–167. doi: 10.1111/nyas.13384. PubMed DOI
Poór M., Boda G., Needs P.W., Kroon P.A., Lemli B., Bencsik T. Interaction of quercetin and its metabolites with warfarin: Displacement of warfarin from serum albumin and inhibition of CYP2C9 enzyme. Biomed. Pharmacother. 2017;88:574–581. doi: 10.1016/j.biopha.2017.01.092. PubMed DOI
Cao H., Pauff J.M., Hille R. X-ray crystal structure of a xanthine oxidase complex with the flavonoid inhibitor quercetin. J. Nat. Prod. 2014;77:1693–1699. doi: 10.1021/np500320g. PubMed DOI
Cao H., Pauff J.M., Hille R. Substrate orientation and catalytic specificity in the action of xanthine oxidase: The sequential hydroxylation of hypoxanthine to uric acid. J. Biol. Chem. 2010;285:28044–28053. doi: 10.1074/jbc.M110.128561. PubMed DOI PMC
Pauff J.M., Cao H., Hille R. Substrate Orientation and Catalysis at the Molybdenum Site in Xanthine Oxidase: CRYSTAL STRUCTURES IN COMPLEX WITH XANTHINE AND LUMAZINE. J. Biol. Chem. 2009;284:8760–8770. doi: 10.1074/jbc.M804517200. PubMed DOI PMC
Okamoto K., Eger B.T., Nishino T., Pai E.F., Nishino T. Mechanism of inhibition of xanthine oxidoreductase by allopurinol: Crystal structure of reduced bovine milk xanthine oxidoreductase bound with oxipurinol. Nucleosides Nucleotides Nucleic Acids. 2008;27:888–893. doi: 10.1080/15257770802146577. PubMed DOI
Cos P., Ying L., Calomne M., Hu J.P., Cimanga K., Van Poel B., Pieters L., Vlietinck A.J., Berghe D.V. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod. 1998;61:71–76. doi: 10.1021/np970237h. PubMed DOI
Zhang C., Wang R., Zhang G., Gong D. Mechanistic insights into the inhibition of quercetin on xanthine oxidase. Int. J. Biol. Macromol. 2018;112:405–412. doi: 10.1016/j.ijbiomac.2018.01.190. PubMed DOI
Day A.J., Bao Y., Morgan M.R., Williamson G. Conjugation position of quercetin glucuronides and effect on biological activity. Free Radic. Biol. Med. 2000;29:1234–1243. doi: 10.1016/S0891-5849(00)00416-0. PubMed DOI
Day A.J., Mellon F., Barron D., Sarrazin G., Morgan M.R., Williamson G. Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin. Free Radic. Res. 2001;35:941–952. doi: 10.1080/10715760100301441. PubMed DOI
Elion G.B. Enzymatic and metabolic studies with allopurinol. Ann. Rheum. Dis. 1966;25:608–614. doi: 10.1136/ard.25.Suppl_6.608. PubMed DOI PMC
Spector T. Inhibition of urate production by allopurinol. Biochem. Pharmacol. 1977;26:355–358. doi: 10.1016/0006-2952(77)90191-5. PubMed DOI
Zhu J.X., Wang Y., Kong L.D., Yang C., Zhang X. Effects of Biota orientalis extract and its flavonoid constituents, quercetin and rutin on serum uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. J. Ethnopharmacol. 2004;93:133–140. doi: 10.1016/j.jep.2004.03.037. PubMed DOI
Huang J., Wang S., Zhu M., Chen J., Zhu X. Effects of Genistein, Apigenin, Quercetin, Rutin and Astilbin on serum uric acid levels and xanthine oxidase activities in normal and hyperuricemic mice. Food Chem. Toxicol. 2011;49:1943–1947. doi: 10.1016/j.fct.2011.04.029. PubMed DOI
Abbey E.L., Rankin J.W. Effect of quercetin supplementation on repeated-sprint performance, xanthine oxidase activity, and inflammation. Int. J. Sport Nutr. Exerc. Metab. 2011;21:91–96. doi: 10.1123/ijsnem.21.2.91. PubMed DOI
Boots A.W., Drent M., De Boer V.C., Bast A., Haenen G.R. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clin. Nutr. 2011;30:506–512. doi: 10.1016/j.clnu.2011.01.010. PubMed DOI
Shi Y., Williamson G. Quercetin lowers plasma uric acid in pre-hyperuricaemic males: A randomised, double-blinded, placebo-controlled, cross-over trial. Br. J. Nutr. 2016;115:800–806. doi: 10.1017/S0007114515005310. PubMed DOI
Heinz S.A., Henson D.A., Nieman D.C., Austin M.D. A 12-week supplementation with quercetin does not affect natural killer cell activity, granulocyte oxidative burst activity or granulocyte phagocytosis in female human subjects. Br. J. Nutr. 2010;104:849–857. doi: 10.1017/S000711451000156X. PubMed DOI
Turnheim K., Krivanek P., Oberbauer R. Pharmacokinetics and pharmacodynamics of allopurinol in elderly and young subjects. Br. J. Clin. Pharmacol. 1999;48:501–509. doi: 10.1046/j.1365-2125.1999.00041.x. PubMed DOI PMC
Cialdella-Kam L., Nieman D.C., Sha W., Meaney M.P., Knab A.M., Shanely R.A. Dose-response to 3 months of quercetin-containing supplements on metabolite and quercetin conjugate profile in adults. Br. J. Nutr. 2013;109:1923–1933. doi: 10.1017/S0007114512003972. PubMed DOI
De Santi C., Pietrabissa A., Mosca F., Pacifici G.M. Methylation of quercetin and fisetin, flavonoids widely distributed in edible vegetables, fruits and wine, by human liver. Int. J. Clin. Pharmacol. Ther. 2002;40:207–212. doi: 10.5414/CPP40207. PubMed DOI
Vida R.G., Fittler A., Somogyi-Végh A., Poór M. Dietary quercetin supplements: Assessment of online product informations and quantitation of quercetin in the products by high performance liquid chromatography. Phytother. Res. 2019 doi: 10.1002/ptr.6382. Accepted manuscript. PubMed DOI
Pimpão R.C., Ventura M.R., Ferreira R.B., Williamson G., Santos C.N. Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit purée. Br. J. Nutr. 2015;113:454–463. doi: 10.1017/S0007114514003511. PubMed DOI
Needs P.W., Kroon P.A. Convenient synthesis of metabolically important glucuronides and sulfates. Tetrahedron. 2006;62:6862–6868. doi: 10.1016/j.tet.2006.04.102. DOI
Mei D.A., Gross G.J., Nithipatikom K. Simultaneous determination of adenosine, inosine, hypoxanthine, xanthine, and uric acid in microdialysis samples using microbore column high-performance liquid chromatography with a diode array detector. Anal. Biochem. 1996;238:34–39. doi: 10.1006/abio.1996.0246. PubMed DOI
Hawwa A.F., Millership J.S., Collier P.S., McElnay J.C. Development and validation of an HPLC method for the rapid and simultaneous determination of 6-mercaptopurine and four of its metabolites in plasma and red blood cells. J. Pharm. Biomed. Anal. 2009;49:401–409. doi: 10.1016/j.jpba.2008.10.045. PubMed DOI
Kim S., Thiessen P.A., Bolton E.E., Chen J., Fu G., Gindulyte A., Han L., He J., He S., Shoemaker B.A., Wang J., et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016;44:D1202–D1213. doi: 10.1093/nar/gkv951. PubMed DOI PMC
Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC
Stewart J.J.P. MOPAC: A semiempirical molecular orbital program. Computer-Aided Mol. Des. 1990;4:1–103. doi: 10.1007/BF00128336. PubMed DOI
Gasteiger J., Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron. 1980;36:3219–3228. doi: 10.1016/0040-4020(80)80168-2. DOI
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Com. Chem. 2009;16:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC