Inhibitory Effects of Quercetin and Its Human and Microbial Metabolites on Xanthine Oxidase Enzyme

. 2019 May 31 ; 20 (11) : . [epub] 20190531

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31159151

Grantová podpora
EFOP-3.6.1.-16-2016-00004 European Social Fund

Quercetin is an abundant flavonoid in nature and is used in several dietary supplements. Although quercetin is extensively metabolized by human enzymes and the colonic microflora, we have only few data regarding the pharmacokinetic interactions of its metabolites. Therefore, we investigated the interaction of human and microbial metabolites of quercetin with the xanthine oxidase enzyme. Inhibitory effects of five conjugates and 23 microbial metabolites were examined with 6-mercaptopurine and xanthine substrates (both at 5 μM), employing allopurinol as a positive control. Quercetin-3'-sulfate, isorhamnetin, tamarixetin, and pyrogallol proved to be strong inhibitors of xanthine oxidase. Sulfate and methyl conjugates were similarly strong inhibitors of both 6-mercaptopurine and xanthine oxidations (IC50 = 0.2-0.7 μM); however, pyrogallol inhibited xanthine oxidation (IC50 = 1.8 μM) with higher potency vs. 6-MP oxidation (IC50 = 10.1 μM). Sulfate and methyl conjugates were approximately ten-fold stronger inhibitors (IC50 = 0.2-0.6 μM) of 6-mercaptopurine oxidation than allopurinol (IC50 = 7.0 μM), and induced more potent inhibition compared to quercetin (IC50 = 1.4 μM). These observations highlight that some quercetin metabolites can exert similar or even a stronger inhibitory effect on xanthine oxidase than the parent compound, which may lead to the development of quercetin-drug interactions (e.g., with 6-mercaptopurin or azathioprine).

Zobrazit více v PubMed

Formica J.V., Regelson W. Review of the biology of Quercetin and related bioflavonoids. Food Chem. Toxicol. 1995;12:1061–1080. doi: 10.1016/0278-6915(95)00077-1. PubMed DOI

Hollman P.C., De Vries J.H., Van Leeuwen S.D., Mengellers M.J., Katan M.B. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 1995;62:1276–1282. doi: 10.1093/ajcn/62.6.1276. PubMed DOI

Kelly G.S. Quercetin. Altern. Med. Rev. 2011;16:172–194. PubMed

Manach C., Texier O., Regerat F., Agullo G., Demigne C., Remesy C. Dietary quercetin is recovered in rat plasma as conjugated derivatives of isorhamnetin and quercetin. J. Nutr. Biochem. 1996;7:375–380. doi: 10.1016/S0955-2863(96)00058-7. DOI

Terao J., Murota K., Kawai Y. Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food Funct. 2011;2:11–17. doi: 10.1039/C0FO00106F. PubMed DOI

Del Rio D., Rodriguez-Mateos A., Spencer J.P.E., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013;18:1818–1892. doi: 10.1089/ars.2012.4581. PubMed DOI PMC

Mullen W., Edwards C.A., Crozier A. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br. J. Nutr. 2006;96:107–116. doi: 10.1079/BJN20061809. PubMed DOI

Conquer J.A., Maiani G., Azzini E., Raguzzini A., Holub B.J. Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J. Nutr. 1998;128:593–597. doi: 10.1093/jn/128.3.593. PubMed DOI

Rechner A.R., Kuhnle G., Bremner P., Hubbard G.P., Moore K.P., Rice-Evans C.A. The metabolic fate of dietary polyphenols in humans. Free Rad. Biol. Med. 2002;33:220–235. doi: 10.1016/S0891-5849(02)00877-8. PubMed DOI

Aura A.M. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev. 2008;3:407–429. doi: 10.1007/s11101-008-9095-3. DOI

Serra A., Macia A., Romero M.P., Reguant J., Ortega N., Motilva M.J. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem. 2012;130:383–393. doi: 10.1016/j.foodchem.2011.07.055. DOI

Day R.O., Graham G.G., Hicks M., McLachlan A.J., Stocker S.L., Williams K.M. Clinical pharmacokinetics and pharmacodynamics of allopurinol and oxypurinol. Clin. Pharmacokinet. 2007;46:623–644. doi: 10.2165/00003088-200746080-00001. PubMed DOI

Leong R.W., Gearry R.B., Sparrow M.P. Thiopurine hepatotoxicity in inflammatory bowel disease: The role for adding allopurinol. Expert Opin. Drug Saf. 2008;7:607–616. doi: 10.1517/14740338.7.5.607. PubMed DOI

Galbusera C., Orth P., Fedida D., Spector T. Superoxide radical production by allopurinol and xanthine oxidase. Biochem. Pharmacol. 2006;71:1747–1752. doi: 10.1016/j.bcp.2006.02.008. PubMed DOI

Berry C.E., Hare J.M. Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. J. Physiol. 2004;555:589–606. doi: 10.1113/jphysiol.2003.055913. PubMed DOI PMC

McLeod H.L. Clinically relevant drug-drug interactions in oncology. Br. J. Clin. Pharmacol. 1998;45:539–544. doi: 10.1046/j.1365-2125.1998.00719.x. PubMed DOI PMC

Lin C.M., Chen C.S., Chen C.T., Liang Y.C., Lin J.K. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem. Biophys. Res. Commun. 2002;294:162–172. doi: 10.1016/S0006-291X(02)00442-4. PubMed DOI

Van Hoorn D.E.C., Nijveldt R.J., Van Leeuwen P.A.M., Hofman Z., M’Rabet L., De Bont D.B.A., Van Norren K. Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids. Eur. J. Pharmacol. 2002;451:111–118. doi: 10.1016/S0014-2999(02)02192-1. PubMed DOI

Mladenka P., Zatloukalová L., Filipský T., Hrdina R. Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free Radic. Biol. Med. 2010;49:963–975. doi: 10.1016/j.freeradbiomed.2010.06.010. PubMed DOI

Iio M., Moriyama A., Matsumoto Y., Takaki N., Fukumoto M. Inhibition of Xanthine Oxidase by Flavonoids. Agric. Biol. Chem. 1985;49:2173–2176. doi: 10.1080/00021369.1985.10867027. DOI

Nagao A., Seki M., Kobayashi H. Inhibition of xanthine oxidase by flavonoids. Biosci. Biotechnol. Biochem. 1999;63:1787–1790. doi: 10.1271/bbb.63.1787. PubMed DOI

Miron A., Aprotosoaie A.C., Trifan A., Xiao J. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann. N. Y. Acad. Sci. 2017;1398:152–167. doi: 10.1111/nyas.13384. PubMed DOI

Poór M., Boda G., Needs P.W., Kroon P.A., Lemli B., Bencsik T. Interaction of quercetin and its metabolites with warfarin: Displacement of warfarin from serum albumin and inhibition of CYP2C9 enzyme. Biomed. Pharmacother. 2017;88:574–581. doi: 10.1016/j.biopha.2017.01.092. PubMed DOI

Cao H., Pauff J.M., Hille R. X-ray crystal structure of a xanthine oxidase complex with the flavonoid inhibitor quercetin. J. Nat. Prod. 2014;77:1693–1699. doi: 10.1021/np500320g. PubMed DOI

Cao H., Pauff J.M., Hille R. Substrate orientation and catalytic specificity in the action of xanthine oxidase: The sequential hydroxylation of hypoxanthine to uric acid. J. Biol. Chem. 2010;285:28044–28053. doi: 10.1074/jbc.M110.128561. PubMed DOI PMC

Pauff J.M., Cao H., Hille R. Substrate Orientation and Catalysis at the Molybdenum Site in Xanthine Oxidase: CRYSTAL STRUCTURES IN COMPLEX WITH XANTHINE AND LUMAZINE. J. Biol. Chem. 2009;284:8760–8770. doi: 10.1074/jbc.M804517200. PubMed DOI PMC

Okamoto K., Eger B.T., Nishino T., Pai E.F., Nishino T. Mechanism of inhibition of xanthine oxidoreductase by allopurinol: Crystal structure of reduced bovine milk xanthine oxidoreductase bound with oxipurinol. Nucleosides Nucleotides Nucleic Acids. 2008;27:888–893. doi: 10.1080/15257770802146577. PubMed DOI

Cos P., Ying L., Calomne M., Hu J.P., Cimanga K., Van Poel B., Pieters L., Vlietinck A.J., Berghe D.V. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod. 1998;61:71–76. doi: 10.1021/np970237h. PubMed DOI

Zhang C., Wang R., Zhang G., Gong D. Mechanistic insights into the inhibition of quercetin on xanthine oxidase. Int. J. Biol. Macromol. 2018;112:405–412. doi: 10.1016/j.ijbiomac.2018.01.190. PubMed DOI

Day A.J., Bao Y., Morgan M.R., Williamson G. Conjugation position of quercetin glucuronides and effect on biological activity. Free Radic. Biol. Med. 2000;29:1234–1243. doi: 10.1016/S0891-5849(00)00416-0. PubMed DOI

Day A.J., Mellon F., Barron D., Sarrazin G., Morgan M.R., Williamson G. Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin. Free Radic. Res. 2001;35:941–952. doi: 10.1080/10715760100301441. PubMed DOI

Elion G.B. Enzymatic and metabolic studies with allopurinol. Ann. Rheum. Dis. 1966;25:608–614. doi: 10.1136/ard.25.Suppl_6.608. PubMed DOI PMC

Spector T. Inhibition of urate production by allopurinol. Biochem. Pharmacol. 1977;26:355–358. doi: 10.1016/0006-2952(77)90191-5. PubMed DOI

Zhu J.X., Wang Y., Kong L.D., Yang C., Zhang X. Effects of Biota orientalis extract and its flavonoid constituents, quercetin and rutin on serum uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. J. Ethnopharmacol. 2004;93:133–140. doi: 10.1016/j.jep.2004.03.037. PubMed DOI

Huang J., Wang S., Zhu M., Chen J., Zhu X. Effects of Genistein, Apigenin, Quercetin, Rutin and Astilbin on serum uric acid levels and xanthine oxidase activities in normal and hyperuricemic mice. Food Chem. Toxicol. 2011;49:1943–1947. doi: 10.1016/j.fct.2011.04.029. PubMed DOI

Abbey E.L., Rankin J.W. Effect of quercetin supplementation on repeated-sprint performance, xanthine oxidase activity, and inflammation. Int. J. Sport Nutr. Exerc. Metab. 2011;21:91–96. doi: 10.1123/ijsnem.21.2.91. PubMed DOI

Boots A.W., Drent M., De Boer V.C., Bast A., Haenen G.R. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clin. Nutr. 2011;30:506–512. doi: 10.1016/j.clnu.2011.01.010. PubMed DOI

Shi Y., Williamson G. Quercetin lowers plasma uric acid in pre-hyperuricaemic males: A randomised, double-blinded, placebo-controlled, cross-over trial. Br. J. Nutr. 2016;115:800–806. doi: 10.1017/S0007114515005310. PubMed DOI

Heinz S.A., Henson D.A., Nieman D.C., Austin M.D. A 12-week supplementation with quercetin does not affect natural killer cell activity, granulocyte oxidative burst activity or granulocyte phagocytosis in female human subjects. Br. J. Nutr. 2010;104:849–857. doi: 10.1017/S000711451000156X. PubMed DOI

Turnheim K., Krivanek P., Oberbauer R. Pharmacokinetics and pharmacodynamics of allopurinol in elderly and young subjects. Br. J. Clin. Pharmacol. 1999;48:501–509. doi: 10.1046/j.1365-2125.1999.00041.x. PubMed DOI PMC

Cialdella-Kam L., Nieman D.C., Sha W., Meaney M.P., Knab A.M., Shanely R.A. Dose-response to 3 months of quercetin-containing supplements on metabolite and quercetin conjugate profile in adults. Br. J. Nutr. 2013;109:1923–1933. doi: 10.1017/S0007114512003972. PubMed DOI

De Santi C., Pietrabissa A., Mosca F., Pacifici G.M. Methylation of quercetin and fisetin, flavonoids widely distributed in edible vegetables, fruits and wine, by human liver. Int. J. Clin. Pharmacol. Ther. 2002;40:207–212. doi: 10.5414/CPP40207. PubMed DOI

Vida R.G., Fittler A., Somogyi-Végh A., Poór M. Dietary quercetin supplements: Assessment of online product informations and quantitation of quercetin in the products by high performance liquid chromatography. Phytother. Res. 2019 doi: 10.1002/ptr.6382. Accepted manuscript. PubMed DOI

Pimpão R.C., Ventura M.R., Ferreira R.B., Williamson G., Santos C.N. Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit purée. Br. J. Nutr. 2015;113:454–463. doi: 10.1017/S0007114514003511. PubMed DOI

Needs P.W., Kroon P.A. Convenient synthesis of metabolically important glucuronides and sulfates. Tetrahedron. 2006;62:6862–6868. doi: 10.1016/j.tet.2006.04.102. DOI

Mei D.A., Gross G.J., Nithipatikom K. Simultaneous determination of adenosine, inosine, hypoxanthine, xanthine, and uric acid in microdialysis samples using microbore column high-performance liquid chromatography with a diode array detector. Anal. Biochem. 1996;238:34–39. doi: 10.1006/abio.1996.0246. PubMed DOI

Hawwa A.F., Millership J.S., Collier P.S., McElnay J.C. Development and validation of an HPLC method for the rapid and simultaneous determination of 6-mercaptopurine and four of its metabolites in plasma and red blood cells. J. Pharm. Biomed. Anal. 2009;49:401–409. doi: 10.1016/j.jpba.2008.10.045. PubMed DOI

Kim S., Thiessen P.A., Bolton E.E., Chen J., Fu G., Gindulyte A., Han L., He J., He S., Shoemaker B.A., Wang J., et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016;44:D1202–D1213. doi: 10.1093/nar/gkv951. PubMed DOI PMC

Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC

Stewart J.J.P. MOPAC: A semiempirical molecular orbital program. Computer-Aided Mol. Des. 1990;4:1–103. doi: 10.1007/BF00128336. PubMed DOI

Gasteiger J., Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron. 1980;36:3219–3228. doi: 10.1016/0040-4020(80)80168-2. DOI

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Com. Chem. 2009;16:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...