Astaxanthin Extract from Haematococcus pluvialis and Its Fractions of Astaxanthin Mono- and Diesters Obtained by CCC Show Differential Antioxidant and Cytoprotective Effects on Naïve-Mouse Spleen Cells

. 2023 May 24 ; 12 (6) : . [epub] 20230524

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37371874

Grantová podpora
APVV - 17-0410, VEGA 2/0033/21, COST Action no. CA21111 Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences, the European Union - the COST Action/MVTS (Slovak Republic).
APVV - 17-0410, Slovak Research and Development Agency

Carotenoids are the most abundant lipid-soluble phytochemicals and are used as dietary supplements to protect against diseases caused by oxidative stress. Astaxanthin, a xanthophyll carotenoid, is a very potent antioxidant with numerous beneficial effects on cellular functions and signaling pathways. In this study, using spleen cells from healthy Balb/c mice, we report the bio-functional effects of an astaxanthin-rich extract (EXT) prepared from the microalga Haematococcus pluvialis and its astaxanthin monoesters-rich fraction (ME) and astaxanthin diesters-rich fraction (DE) obtained by fractionation of EXT using countercurrent chromatography (CCC). After incubation under standard culture conditions (humidity, 37 °C, 5% CO2, atmospheric oxygen), the viability of untreated splenocytes, as determined by the trypan blue exclusion assay, the MTT assay, and the neutral red assay, decreases to approximately 75% after 24 h compared with naïve splenocytes. This effect correlated with the decrease in mitochondrial membrane potential and the transition of ~59% of cells to the early stage of apoptosis, as well as with the decreased ROS production, indicating that hyperoxia in cell-culture deteriorates cell functions. They are restored or stimulated by co-cultivation with EXT, ME, and DE up to 10 µg/mL in the order EXT > DE > ME, suggesting that esterification increases bioavailability to cells in vitro. ROS and H2O2 concentrations reflect mRNA transcriptional activity of Nrf2, superoxide dismutase 1 (SOD1), catalase, and glutathione peroxidase 1, as well as SOD-mediated ROS conversion, whereas they inversely correlate with iNOS-mediated NO production. The highest-tested concentration of EXT, ME, and DE (40 µg/mL) is detrimental to cells, probably because of the overwhelming scavenging activity of astaxanthin and its esters for the reactive oxygen/nitrogen species required for cellular functions and signal transduction at low physiological concentrations. In this study, we demonstrate that differential activities of ME and DE contribute to the final antioxidant and cytoprotective effects of astaxanthin extract, which is beneficial in preventing a wide range of ROS-induced adverse effects, with DE being more effective. In addition, the selection of physioxia-like conditions for pharmacological research is highlighted.

Zobrazit více v PubMed

Liochev S.I. Reactive oxygen species and the free radical theory of aging. Free. Radic. Biol. Med. 2013;60:1–4. doi: 10.1016/j.freeradbiomed.2013.02.011. PubMed DOI

Gorni D., Finco A. Oxidative stress in elderly population: A prevention screening study. Aging Med. 2020;3:205–213. doi: 10.1002/agm2.12121. PubMed DOI PMC

Villalpando-Rodriguez G.E., Gibson S.B. Reactive Oxygen Species (ROS) Regulates Different Types of Cell Death by Acting as a Rheostat. Oxidative Med. Cell. Longev. 2021;2021:9912436. doi: 10.1155/2021/9912436. PubMed DOI PMC

Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981–990. doi: 10.1016/j.cellsig.2012.01.008. PubMed DOI PMC

Zheng F., Gonçalves F.M., Abiko Y., Li H., Kumagai Y., Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol. 2020;34:101475. doi: 10.1016/j.redox.2020.101475. PubMed DOI PMC

Chew B.P., Park J.S. Carotenoid Action on the Immune Response. J. Nutr. 2004;134:257S–261S. doi: 10.1093/jn/134.1.257S. PubMed DOI

Miki W. Biological functions and activities of animal carotenoids. Pure Appl. Chem. 1991;63:141–146. doi: 10.1351/pac199163010141. DOI

Rao A.R., Reddy R.L.R., Baskaran V., Sarada R., Ravishankar G.A. Characterization of Microalgal Carotenoids by Mass Spectrometry and Their Bioavailability and Antioxidant Properties Elucidated in Rat Model. J. Agric. Food Chem. 2010;58:8553–8559. PubMed

Olaizola M. Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J. Appl. Phycol. 2000;12:499–506. doi: 10.1023/A:1008159127672. DOI

Higuera-Ciapara I., Félix-Valenzuela L., Goycoolea F.M. Astaxanthin: A Review of its Chemistry and Applications. Crit. Rev. Food Sci. Nutr. 2006;46:185–196. doi: 10.1080/10408690590957188. PubMed DOI

Shah M.M.R., Liang Y., Cheng J.J., Daroch M. Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Front. Plant Sci. 2016;7:531. doi: 10.3389/fpls.2016.00531. PubMed DOI PMC

Fábryová T., Tůmová L., da Silva D.C., Pereira D.M., Andrade P.B., Valentão P., Hrouzek P., Kopecký J., Cheel J. Isolation of astaxanthin monoesters from the microalgae Haematococcus pluvialis by high performance countercurrent chromatography (HPCCC) combined with high performance liquid chromatography (HPLC) Algal Res. Biomass Biofuels Bioprod. 2020;49:101947. doi: 10.1016/j.algal.2020.101947. DOI

Rao A.R., Sarada R., Shylaja M.D., Ravishankar G.A. Evaluation of hepatoprotective and antioxidant activity of astaxanthin and astaxanthin esters from microalga—Haematococcus pluvialis. J. Food Sci. Technol. 2015;52:6703–6710. doi: 10.1007/s13197-015-1775-6. PubMed DOI PMC

Petri D., Lundebye A.-K. Tissue distribution of astaxanthin in rats following exposure to graded levels in the feed. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007;145:202–209. doi: 10.1016/j.cbpc.2006.12.008. PubMed DOI

Choi H.D., Kang H.E., Yang S.H., Lee M.G., Shin W.G. Pharmacokinetics and first-pass metabolism of astaxanthin in rats. Br. J. Nutr. 2011;105:220–227. doi: 10.1017/S0007114510003454. PubMed DOI

Palozza P., Krinsky N.I. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch. Biochem. Biophys. 1992;297:291–295. doi: 10.1016/0003-9861(92)90675-M. PubMed DOI

McNulty H.P., Byun J., Lockwood S.F., Jacob R.F., Mason R.P. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochim. Biophys. Acta. 2007;1768:167–174. doi: 10.1016/j.bbamem.2006.09.010. PubMed DOI

Ambati R.R., Siew Moi P., Ravi S., Aswathanarayana R.G. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Mar. Drugs. 2014;12:128–152. doi: 10.3390/md12010128. PubMed DOI PMC

Lorenz R.T., Cysewski G.R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 2000;18:160–167. doi: 10.1016/S0167-7799(00)01433-5. PubMed DOI

Cemerski S., Cantagrel A., van Meerwijk J.P., Romagnoli P. Reactive Oxygen Species Differentially Affect T Cell Receptor-signaling Pathways. J. Biol. Chem. 2002;277:19585–19593. doi: 10.1074/jbc.M111451200. PubMed DOI

Cemerski S., van Meerwijk J.P.M., Romagnoli P. Oxidative-stress-induced T lymphocyte hyporesponsiveness is caused by structural modification rather than proteasomal degradation of crucial TCR signaling molecules. Eur. J. Immunol. 2003;33:2178–2185. doi: 10.1002/eji.200323898. PubMed DOI

Campoio T., Oliveira F., Otton R. Oxidative stress in human lymphocytes treated with fatty acid mixture: Role of carotenoid astaxanthin. Toxicol. Vitr. 2011;25:1448–1456. doi: 10.1016/j.tiv.2011.04.018. PubMed DOI

Bárcenas-Pérez D., Lukeš M., Hrouzek P., Zápal J., Kuzma M., Kopecký J., Kubáč D., Arredondo-Vega B.O., Cheel J. Bio-production of eicosapentaenoic acid from the diatom Nanofrustulum shiloi via two-step high performance countercurrent chromatography. J. Appl. Phycol. 2022;34:2995–3010. doi: 10.1007/s10811-022-02816-w. DOI

Repetto G., del Peso A., Zurita J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008;3:1125–1131. doi: 10.1038/nprot.2008.75. PubMed DOI

Santos L., Honda N., Carlos I.Z., Vilegas W. Intermediate reactive oxygen and nitrogen from macrophages induced by Brazilian lichens. Fitoterapia. 2004;75:473–479. doi: 10.1016/j.fitote.2004.04.002. PubMed DOI

Pick E., Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods. 1980;38:161–170. doi: 10.1016/0022-1759(80)90340-3. PubMed DOI

Ciglanová D., Jurčacková Z., Mudroňová D., Dvorožňáková E., Hrčková G. Differential Activity of Human Leukocyte Extract on Systemic Immune Response and Cyst Growth in Mice with Echinococcus Multilocularis Infection After Oral, Subcutaneous and Intraperitoneal Routes of Administration. Helminthologia. 2022;59:341–356. doi: 10.2478/helm-2022-0038. PubMed DOI PMC

Wang P., Geng J., Gao J., Zhao H., Li J., Shi Y., Yang B., Xiao C., Linghu Y., Sun X., et al. Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf2 axis. Nat. Commun. 2019;10:755. doi: 10.1038/s41467-019-08680-6. PubMed DOI PMC

Tan S.M., Stefanovic N., Tan G., Wilkinson-Berka J.L., de Haan J.B. Lack of the Antioxidant Glutathione Peroxidase-1 (GPx1) Exacerbates Retinopathy of Prematurity in Mice. Investig. Opthalmology Vis. Sci. 2013;54:555–562. doi: 10.1167/iovs.12-10685. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Holtin K., Kuehnle M., Rehbein J., Schuler P., Nicholson G., Albert K. Determination of astaxanthin and astaxanthin esters in the microalgae Haematococcus pluvialis by LC-(APCI)MS and characterization of predominant carotenoid isomers by NMR spectroscopy. Anal. Bioanal. Chem. 2009;395:1613–1622. doi: 10.1007/s00216-009-2837-2. PubMed DOI

Shields H.J., Traa A., Van Raamsdonk J.M. Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Front. Cell Dev. Biol. 2021;9:628157. doi: 10.3389/fcell.2021.628157. PubMed DOI PMC

O’Donnell V.B., Eiserich J.P., Bloodsworth A., Chumley P.H., Kirk M., Barnes S., Darley-Usmar V.M., Freeman B.A. Nitration of unsaturated fatty acids by nitric oxide-derived reactive species. Methods Enzym. 1999;301:454–470. PubMed

Nagy G., Clark J.M., Buzas E., Gorman C., Pasztoi M., Koncz A., Falus A., Cope A.P. Nitric oxide production of T lymphocytes is increased in rheumatoid arthritis. Immunol. Lett. 2008;118:55–58. doi: 10.1016/j.imlet.2008.02.009. PubMed DOI

Zhou Q., Xu J., Yang L., Gu C., Xue C. Thermal stability and oral absorbability of astaxanthin esters from Haematococcus pluvialis in Balb/c mice. J. Sci. Food Agric. 2019;99:3662–3671. doi: 10.1002/jsfa.9588. PubMed DOI

Carreau A., El Hafny-Rahbi B., Matejuk A., Grillon C., Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 2011;15:1239–1253. doi: 10.1111/j.1582-4934.2011.01258.x. PubMed DOI PMC

Alva R., Mirza M., Baiton A., Lazuran L., Samokysh L., Bobinski A., Cowan C., Jaimon A., Obioru D., Al Makhoul T., et al. Oxygen toxicity: Cellular mechanisms in normobaric hyperoxia. Cell Biol. Toxicol. 2022;39:111–143. doi: 10.1007/s10565-022-09773-7. PubMed DOI PMC

Holland S.K., Kennan R.P., Schaub M.M., D’Angelo M.J., Gore J.C. Imaging oxygen tension in liver and spleen by19F NMR. Magn. Reson. Med. 1993;29:446–458. doi: 10.1002/mrm.1910290405. PubMed DOI

Maddalena L.A., Selim S.M., Fonseca J., Messner H., McGowan S., Stuart J.A. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture. Biochem. Biophys. Res. Commun. 2017;493:246–251. doi: 10.1016/j.bbrc.2017.09.037. PubMed DOI

Moradi F., Moffatt C., Stuart J.A. The Effect of Oxygen and Micronutrient Composition of Cell Growth Media on Cancer Cell Bioenergetics and Mitochondrial Networks. Biomolecules. 2021;11:1177. doi: 10.3390/biom11081177. PubMed DOI PMC

Fonseca J., Moradi F., Valente A.J., Stuart J.A. Oxygen and Glucose Levels in Cell Culture Media Determine Resveratrol’s Effects on Growth, Hydrogen Peroxide Production, and Mitochondrial Dynamics. Antioxidants. 2018;7:157. doi: 10.3390/antiox7110157. PubMed DOI PMC

Berod L., Friedrich C., Nandan A., Freitag J., Hagemann S., Harmrolfs K., Sandouk A., Hesse C., Castro C.N., Bähre H., et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 2014;20:1327–1333. doi: 10.1038/nm.3704. PubMed DOI

Kidani Y., Elsaesser H., Hock M.B., Vergnes L., Williams K.J., Argus J.P., Marbois B.N., Komisopoulou E., Wilson E.B., Osborne T.F., et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 2013;14:489–499. doi: 10.1038/ni.2570. PubMed DOI PMC

Wang R., Dillon C.P., Shi L.Z., Milasta S., Carter R., Finkelstein D., McCormick L.L., Fitzgerald P., Chi H., Munger J., et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35:871–882. doi: 10.1016/j.immuni.2011.09.021. PubMed DOI PMC

Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015;111:A3B1–A3B3. doi: 10.1002/0471142735.ima03bs111. PubMed DOI PMC

Berridge M.V., Herst P.M., Tan A.S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Annu. Rev. 2005;11:127–152. PubMed

Stockert J.C., Blázquez-Castro A., Cañete M., Horobin R.W., Villanueva Á. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012;114:785–796. doi: 10.1016/j.acthis.2012.01.006. PubMed DOI

D’Autréaux B., Toledano M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007;8:813–824. doi: 10.1038/nrm2256. PubMed DOI

Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011;194:7–15. doi: 10.1083/jcb.201102095. PubMed DOI PMC

Kaulmann A., Bohn T. Carotenoids, inflammation, and oxidative stress--implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res. 2014;34:907–929. doi: 10.1016/j.nutres.2014.07.010. PubMed DOI

Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., Dong W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev. 2016;2016:4350965. doi: 10.1155/2016/4350965. PubMed DOI PMC

Giuffrida D., Dugo P., Salvo A., Saitta M., Dugo G. Free carotenoid and carotenoid ester composition in native orange juices of different varieties. Fruits. 2010;65:277–284. doi: 10.1051/fruits/2010023. DOI

Hwang S.H., Kim J.M., Kim S., Yoon M.J., Park K.S. Chemical Transformation of Astaxanthin from Haematococcus pluvialis Improves Its Antioxidative and Anti-inflammatory Activities. ACS Omega. 2020;5:19120–19130. doi: 10.1021/acsomega.0c02479. PubMed DOI PMC

Chao T., Wang H., Ho P.-C. Mitochondrial Control and Guidance of Cellular Activities of T Cells. Front. Immunol. 2017;8:473. doi: 10.3389/fimmu.2017.00473. PubMed DOI PMC

Shinohara Y., Tsukimoto M. Adenine Nucleotides Attenuate Murine T Cell Activation Induced by Concanavalin A or T Cell Receptor Stimulation. Front. Pharmacol. 2018;8:986. doi: 10.3389/fphar.2017.00986. PubMed DOI PMC

Stähler F., Roemer K. Mutant p53 can provoke apoptosis in p53-deficient Hep3B cells with delayed kinetics relative to wild-type p53. Oncogene. 1998;17:3507–3512. doi: 10.1038/sj.onc.1202245. PubMed DOI

Audi S.H., Ganesh S., Taheri P., Zhang X., Dash R.K., Clough A.V., Jacobs E.R. Depolarized mitochondrial membrane potential and protection with duroquinone in isolated perfused lungs from rats exposed to hyperoxia. J. Appl. Physiol. 2022;132:346–356. doi: 10.1152/japplphysiol.00565.2021. PubMed DOI PMC

Alva R., Gardner G.L., Liang P., Stuart J.A. Supraphysiological Oxygen Levels in Mammalian Cell Culture: Current State and Future Perspectives. Cells. 2022;11:3123. doi: 10.3390/cells11193123. PubMed DOI PMC

Fridovich I. Superoxide Radical and Superoxide Dismutases. Annu. Rev. Biochem. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525. PubMed DOI

Juarez J.C., Manuia M., Burnett M.E., Betancourt O., Boivin B., Shaw D.E., Tonks N.K., Mazar A.P., Doñate F. Superoxide dismutase 1 (SOD1) is essential for H(2)O(2)-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. USA. 2008;105:7147–7152. doi: 10.1073/pnas.0709451105. PubMed DOI PMC

Lardinois O.M. Reactions of Bovine Liver Catalase with Superoxide Radicals and Hydrogen Peroxide. Free. Radic. Res. 1995;22:251–274. doi: 10.3109/10715769509147544. PubMed DOI

Nandi A., Yan L.-J., Jana C.K., Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Med. Cell. Longev. 2019;2019:9613090. doi: 10.1155/2019/9613090. PubMed DOI PMC

Pei J., Pan X., Wei G., Hua Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front. Pharmacol. 2023;14:1147414. doi: 10.3389/fphar.2023.1147414. PubMed DOI PMC

Tonelli C., Chio I.I.C., Tuveson D.A. Transcriptional Regulation by Nrf2. Antioxid. Redox Signal. 2018;29:1727–1745. doi: 10.1089/ars.2017.7342. PubMed DOI PMC

Robledinos-Antón N., Fernández-Ginés R., Manda G., Cuadrado A. Activators and Inhibitors of NRF2: A Review of Their Potential for Clinical Development. Oxidative Med. Cell. Longev. 2019;2019:9372182. doi: 10.1155/2019/9372182. PubMed DOI PMC

Rühl R. Effects of dietary retinoids and carotenoids on immune development. Proc. Nutr. Soc. 2007;66:458–469. doi: 10.1017/S002966510600509X. PubMed DOI

Linnewiel-Hermoni K., Motro Y., Miller Y., Levy J., Sharoni Y. Carotenoid derivatives inhibit nuclear factor kappa B activity in bone and cancer cells by targeting key thiol groups. Free. Radic. Biol. Med. 2014;75:105–120. doi: 10.1016/j.freeradbiomed.2014.07.024. PubMed DOI

Diefenbach A., Schindler H., Donhauser N., Lorenz E., Laskay T., MacMicking J., Röllinghoff M., Gresser I., Bogdan C. Type 1 interferon (IFNalpha/beta) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite. Immunity. 1998;8:77–87. doi: 10.1016/S1074-7613(00)80460-4. PubMed DOI

Xue Q., Yan Y., Zhang R., Xiong H. Regulation of iNOS on Immune Cells and Its Role in Diseases. Int. J. Mol. Sci. 2018;19:3805. doi: 10.3390/ijms19123805. PubMed DOI PMC

Bogdan C. Nitric oxide and the immune response. Nat. Immunol. 2001;2:907–916. doi: 10.1038/ni1001-907. PubMed DOI

Sun J., Druhan L.J., Zweier J.L. Reactive oxygen and nitrogen species regulate inducible nitric oxide synthase function shifting the balance of nitric oxide and superoxide production. Arch. Biochem. Biophys. 2010;494:130–137. doi: 10.1016/j.abb.2009.11.019. PubMed DOI PMC

Ritchie R.H., Drummond G.R., Sobey C.G., De Silva T.M., Kemp-Harper B.K. The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol. Res. 2017;116:57–69. doi: 10.1016/j.phrs.2016.12.017. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...