G-quadruplexes in the evolution of hepatitis B virus
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37395407
PubMed Central
PMC10415126
DOI
10.1093/nar/gkad556
PII: 7217046
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- G-kvadruplexy * MeSH
- genom lidský MeSH
- genomika MeSH
- lidé MeSH
- paleontologie MeSH
- virus hepatitidy B * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hepatitis B virus (HBV) is one of the most dangerous human pathogenic viruses found in all corners of the world. Recent sequencing of ancient HBV viruses revealed that these viruses have accompanied humanity for several millenia. As G-quadruplexes are considered to be potential therapeutic targets in virology, we examined G-quadruplex-forming sequences (PQS) in modern and ancient HBV genomes. Our analyses showed the presence of PQS in all 232 tested HBV genomes, with a total number of 1258 motifs and an average frequency of 1.69 PQS per kbp. Notably, the PQS with the highest G4Hunter score in the reference genome is the most highly conserved. Interestingly, the density of PQS motifs is lower in ancient HBV genomes than in their modern counterparts (1.5 and 1.9/kb, respectively). This modern frequency of 1.90 is very close to the PQS frequency of the human genome (1.93) using identical parameters. This indicates that the PQS content in HBV increased over time to become closer to the PQS frequency in the human genome. No statistically significant differences were found between PQS densities in HBV lineages found in different continents. These results, which constitute the first paleogenomics analysis of G4 propensity, are in agreement with our hypothesis that, for viruses causing chronic infections, their PQS frequencies tend to converge evolutionarily with those of their hosts, as a kind of 'genetic camouflage' to both hijack host cell transcriptional regulatory systems and to avoid recognition as foreign material.
Faculty of Chemistry Brno University of Technology Purkyňova 118 612 00 Brno Czech Republic
Institute of Biophysics of the Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Bock C.T., Schranz P., Schröder C.H., Zentgraf H.. Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell. Virus Genes. 1994; 8:215–229. PubMed
Newbold J.E., Xin H., Tencza M., Sherman G., Dean J., Bowden S., Locarnini S.. The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes. J. Virol. 1995; 69:3350–3357. PubMed PMC
Summers J., Mason W.S.. Replication of the genome of a hepatitis B–like virus by reverse transcription of an RNA intermediate. Cell. 1982; 29:403–415. PubMed
Tiollais P., Pourcel C., Dejean A.. The hepatitis B virus. Nature. 1985; 317:489–495. PubMed
MacDonald D.M., Holmes E.C., Lewis J.C., Simmonds P.. Detection of hepatitis B virus infection in wild-born chimpanzees (Pan troglodytes verus): phylogenetic relationships with human and other primate genotypes. J. Virol. 2000; 74:4253–4257. PubMed PMC
Drexler J.F., Geipel A., König A., Corman V.M., van Riel D., Leijten L.M., Bremer C.M., Rasche A., Cottontail V.M., Maganga G.D.et al. .. Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 2013; 110:16151–16156. PubMed PMC
Lauber C., Seitz S., Mattei S., Suh A., Beck J., Herstein J., Börold J., Salzburger W., Kaderali L., Briggs J.A.G.et al. .. Deciphering the origin and evolution of hepatitis B viruses by means of a family of non-enveloped fish viruses. Cell Host Microbe. 2017; 22:387–399. PubMed PMC
de Carvalho Dominguez Souza B.F., König A., Rasche A., de Oliveira Carneiro I., Stephan N., Corman V.M., Roppert P.L., Goldmann N., Kepper R., Müller S.F.et al. .. A novel hepatitis B virus species discovered in capuchin monkeys sheds new light on the evolution of primate hepadnaviruses. J. Hepatol. 2018; 68:1114–1122. PubMed
Kocher A., Papac L., Barquera R., Key F.M., Spyrou M.A., Hübler R., Rohrlach A.B., Aron F., Stahl R., Wissgott A.et al. .. Ten millennia of hepatitis B virus evolution. Science. 2021; 374:182–188. PubMed
Perrone R., Butovskaya E., Daelemans D., Palù G., Pannecouque C., Richter S.N.. Anti-HIV-1 activity of the G-quadruplex ligand BRACO-19. J. Antimicrob. Chemother. 2014; 69:3248–3258. PubMed
Frasson I., Soldà P., Nadai M., Tassinari M., Scalabrin M., Gokhale V., Hurley L.H., Richter S.N.. Quindoline-derivatives display potent G-quadruplex-mediated antiviral activity against herpes simplex virus 1. Antiviral Res. 2022; 208:105432. PubMed PMC
Zhai L.-Y., Su A.-M., Liu J.-F., Zhao J.-J., Xi X.-G., Hou X.-M.. Recent advances in applying G-quadruplex for SARS-CoV-2 targeting and diagnosis: a review. Int. J. Biol. Macromol. 2022; 221:1476–1490. PubMed PMC
Puig Lombardi E., Londoño-Vallejo A.. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 2020; 48:1–15. PubMed PMC
Ruggiero E., Richter S.N.. Viral G-quadruplexes: new frontiers in virus pathogenesis and antiviral therapy. Annu. Rep. Med. Chem. 2020; 54:101–131. PubMed PMC
Teng Y., Zhu M., Chi Y., Li L., Jin Y.. Can G-quadruplex become a promising target in HBV therapy?. Front. Immunol. 2022; 13:1091873. PubMed PMC
Chakraborty D., Ghosh S.. The epsilon motif of hepatitis B virus RNA exhibits a potassium-dependent ribonucleolytic activity. FEBS J. 2017; 284:1184–1203. PubMed
Biswas B., Kandpal M., Vivekanandan P.. A G-quadruplex motif in an envelope gene promoter regulates transcription and virion secretion in HBV genotype B. Nucleic Acids Res. 2017; 45:11268–11280. PubMed PMC
Saranathan N., Vivekanandan P.. G-Quadruplexes: more Than Just a Kink in Microbial Genomes. Trends Microbiol. 2019; 27:148–163. PubMed PMC
Meier-Stephenson V., Badmalia M.D., Mrozowich T., Lau K.C.K., Schultz S.K., Gemmill D.L., Osiowy C., van Marle G., Coffin C.S., Patel T.R.. Identification and characterization of a G-quadruplex structure in the pre-core promoter region of hepatitis B virus covalently closed circular DNA. J. Biol. Chem. 2021; 296:100589. PubMed PMC
Fleming A.M., Nguyen N.L.B., Burrows C.J.. Colocalization of m6A and G-quadruplex-forming sequences in viral RNA (HIV, zika, hepatitis B, and SV40) suggests topological control of adenosine N6-methylation. ACS Cent. Sci. 2019; 5:218–228. PubMed PMC
Somkuti J., Molnár O.R., Grád A., Smeller L.. Pressure perturbation studies of noncanonical viral nucleic acid structures. Biology. 2021; 10:1173. PubMed PMC
Molnár O.R., Végh A., Somkuti J., Smeller L.. Characterization of a G-quadruplex from hepatitis B virus and its stabilization by binding TMPyP4, BRACO19 and PhenDC3. Sci. Rep. 2021; 11:23243. PubMed PMC
Sun J., Wu G., Pastor F., Rahman N., Wang W.-H., Zhang Z., Merle P., Hui L., Salvetti A., Durantel D.et al. .. RNA helicase DDX5 enables STAT1 mRNA translation and interferon signalling in hepatitis B virus replicating hepatocytes. Gut. 2022; 71:991–1005. PubMed PMC
Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., Vollger M.R., Altemose N., Uralsky L., Gershman A.et al. .. The complete sequence of a human genome. Science. 2022; 376:44–53. PubMed PMC
Okonechnikov K., Golosova O., Fursov M., Team U.. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012; 28:1166–1167. PubMed
Crooks G.E., Hon G., Chandonia J.-M., Brenner S.E.. WebLogo: a sequence logo generator. Genome Res. 2004; 14:1188–1190. PubMed PMC
Harkins K.M., Stone A.C.. Ancient pathogen genomics: insights into timing and adaptation. J. Hum. Evol. 2015; 79:137–149. PubMed
de-Dios T., Scheib C.L., Houldcroft C.J.. An adagio for viruses, played out on ancient DNA. Genome Biol. Evol. 2023; 15:evad047. PubMed PMC
Taubenberger J.K., Baltimore D., Doherty P.C., Markel H., Morens D.M., Webster R.G., Wilson I.A.. Reconstruction of the 1918 influenza virus: unexpected rewards from the past. Mbio. 2012; 3:e00201-12. PubMed PMC
Sudhan S.S., Sharma P.. Human viruses: emergence and evolution. Emerg. Reemerg. Viral Pathog. 2020; 2020:53–68.
Irving-Pease E.K., Muktupavela R., Dannemann M., Racimo F.. Quantitative human paleogenetics: what can ancient DNA tell us about complex trait evolution?. Front. Genet. 2021; 12:703541. PubMed PMC
Schädler S., Hildt E.. HBV life cycle: entry and morphogenesis. Viruses. 2009; 1:185–209. PubMed PMC
Bohálová N., Cantara A., Bartas M., Kaura P., Šťastný J., Pečinka P., Fojta M., Brázda V.. Tracing dsDNA virus-host coevolution through correlation of their G-quadruplex-forming sequences. Int. J. Mol. Sci. 2021; 22:3433. PubMed PMC
Bartas M., Brázda V., Bohálová N., Cantara A., Volná A., Stachurová T., Malachová K., Jagelská E.B., Porubiaková O., Červeň J.et al. .. In-depth bioinformatic analyses of nidovirales including human SARS-CoV-2, SARS-CoV, MERS-CoV viruses suggest important roles of non-canonical nucleic acid structures in their lifecycles. Front. Microbiol. 2020; 11:1583. PubMed PMC
Lavigne M., Helynck O., Rigolet P., Boudria-Souilah R., Nowakowski M., Baron B., Brülé S., Hoos S., Raynal B., Guittat L.et al. .. SARS-CoV-2 Nsp3 unique domain SUD interacts with guanine quadruplexes and G4-ligands inhibit this interaction. Nucleic Acids Res. 2021; 49:7695–7712. PubMed PMC
Ely B. Genomic GC content drifts downward in most bacterial genomes. PLoS One. 2021; 16:e0244163. PubMed PMC
Šmarda P., Bureš P., Horová L., Leitch I.J., Mucina L., Pacini E., Tichý L., Grulich V., Rotreklová O.. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc. Natl. Acad. Sci. U.S.A. 2014; 111:E4096–E4102. PubMed PMC
Wang Y., Mao J.-M., Wang G.-D., Luo Z.-P., Yang L., Yao Q., Chen K.-P.. Human SARS-CoV-2 has evolved to reduce CG dinucleotide in its open reading frames. Sci. Rep. 2020; 10:12331. PubMed PMC
Matyášek R., Kovařík A.. Mutation patterns of human SARS-CoV-2 and bat RaTG13 coronavirus genomes are strongly biased towards C>U transitions, indicating rapid evolution in their Hosts. Genes (Basel). 2020; 11:761. PubMed PMC
Goswami P., Bartas M., Lexa M., Bohálová N., Volná A., Červeň J., Červeňová V., Pečinka P., Špunda V., Fojta M.et al. .. SARS-CoV-2 hot-spot mutations are significantly enriched within inverted repeats and CpG island loci. Brief Bioinform. 2021; 22:1338–1345. PubMed PMC
Brázda V., Porubiaková O., Cantara A., Bohálová N., Coufal J., Bartas M., Fojta M., Mergny J.-L.. G-quadruplexes in H1N1 influenza genomes. BMC Genomics [Electronic Resource]. 2021; 22:77. PubMed PMC
Bohálová N., Cantara A., Bartas M., Kaura P., Šťastný J., Pečinka P., Fojta M., Mergny J.-L., Brázda V.. Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie. 2021; 186:13–27. PubMed
Brown J.C. High G+C content of herpes simplex virus DNA: proposed role in protection against retrotransposon insertion. Open Biochem. J. 2007; 1:33–42. PubMed PMC
Vinogradov A.E., Anatskaya O.V.. DNA helix: the importance of being AT-rich. Mamm. Genome. 2017; 28:455–464. PubMed
Calvignac-Spencer S., Düx A., Gogarten J.F., Patrono L.V.. Kielian M., Mettenleiter T.C., Roossinck M.J.. Chapter Two - Molecular archeology of human viruses. Advances in Virus Research. 2021; 111:Academic Press; 31–61. PubMed