Tracing dsDNA Virus-Host Coevolution through Correlation of Their G-Quadruplex-Forming Sequences

. 2021 Mar 26 ; 22 (7) : . [epub] 20210326

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33810462

Grantová podpora
18-15548S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/15_003/0000477 ERDF

The importance of gene expression regulation in viruses based upon G-quadruplex may point to its potential utilization in therapeutic targeting. Here, we present analyses as to the occurrence of putative G-quadruplex-forming sequences (PQS) in all reference viral dsDNA genomes and evaluate their dependence on PQS occurrence in host organisms using the G4Hunter tool. PQS frequencies differ across host taxa without regard to GC content. The overlay of PQS with annotated regions reveals the localization of PQS in specific regions. While abundance in some, such as repeat regions, is shared by all groups, others are unique. There is abundance within introns of Eukaryota-infecting viruses, but depletion of PQS in introns of bacteria-infecting viruses. We reveal a significant positive correlation between PQS frequencies in dsDNA viruses and corresponding hosts from archaea, bacteria, and eukaryotes. A strong relationship between PQS in a virus and its host indicates their close coevolution and evolutionarily reciprocal mimicking of genome organization.

Zobrazit více v PubMed

McLaughlin R.N., Malik H.S. Genetic conflicts: The usual suspects and beyond. J. Exp. Biol. 2017;220:6–17. doi: 10.1242/jeb.148148. PubMed DOI PMC

Kaján G.L., Doszpoly A., Tarján Z.L., Vidovszky M.Z., Papp T. Virus–Host Coevolution with a Focus on Animal and Human DNA Viruses. J. Mol. Evol. 2020;88:41–56. doi: 10.1007/s00239-019-09913-4. PubMed DOI PMC

Charpentier E., Doudna J.A. Rewriting a genome. Nat. Cell Biol. 2013;495:50–51. doi: 10.1038/495050a. PubMed DOI

Moelling K., Broecker F., Russo G., Sunagawa S. RNase H as Gene Modifier, Driver of Evolution and Antiviral Defense. Front. Microbiol. 2017;8:1745. doi: 10.3389/fmicb.2017.01745. PubMed DOI PMC

Woolhouse M.E.J., Webster J.P., Domingo E., Charlesworth B., Levin B.R. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat. Genet. 2002;32:569–577. doi: 10.1038/ng1202-569. PubMed DOI

Lemarteleur T., Gomez D., Paterski R., Mandine E., Mailliet P., Riou J.-F. Stabilization of the c-myc gene promoter quadruplex by specific ligands’ inhibitors of telomerase. Biochem. Biophys. Res. Commun. 2004;323:802–808. doi: 10.1016/j.bbrc.2004.08.150. PubMed DOI

Patel D.J., Phan A.T., Kuryavyi V. Human telomere, oncogenic promoter and 5’-UTR G-quadruplexes: Diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res. 2007;35:7429–7455. doi: 10.1093/nar/gkm711. PubMed DOI PMC

Rhodes D., Lipps H.J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015;43:8627–8637. doi: 10.1093/nar/gkv862. PubMed DOI PMC

Mishra S.K., Tawani A., Mishra A., Kumar A. G4IPDB: A database for G-quadruplex structure forming nucleic acid interacting proteins. Sci. Rep. 2016;6:38144. doi: 10.1038/srep38144. PubMed DOI PMC

Brázda V., Hároníková L., Liao J.C.C., Fojta M. DNA and RNA Quadruplex-Binding Proteins. Int. J. Mol. Sci. 2014;15:17493–17517. doi: 10.3390/ijms151017493. PubMed DOI PMC

Alavi S., Ghadiri H., Dabirmanesh B., Moriyama K., Khajeh K., Masai H. G-quadruplex binding protein Rif1, a key regulator of replication timing. J. Biochem. 2021;169:1–14. doi: 10.1093/jb/mvaa128. PubMed DOI

Brázda V., Červeň J., Bartas M., Mikysková N., Coufal J., Pečinka P. The Amino Acid Composition of Quadruplex Binding Proteins Reveals a Shared Motif and Predicts New Potential Quadruplex Interactors. Molecules. 2018;23:2341. doi: 10.3390/molecules23092341. PubMed DOI PMC

Masuzawa T., Oyoshi T. Roles of the RGG Domain and RNA Recognition Motif of Nucleolin in G-Quadruplex Stabilization. ACS Omega. 2020;5:5202–5208. doi: 10.1021/acsomega.9b04221. PubMed DOI PMC

Brázda V., Coufal J., Liao J.C., Arrowsmith C.H. Preferential binding of IFI16 protein to cruciform structure and superhelical DNA. Biochem. Biophys. Res. Commun. 2012;422:716–720. doi: 10.1016/j.bbrc.2012.05.065. PubMed DOI

Tosoni E., Frasson I., Scalabrin M., Perrone R., Butovskaya E., Nadai M., Palù G., Fabris D., Richter S.N. Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res. 2015;43:8884–8897. doi: 10.1093/nar/gkv897. PubMed DOI PMC

Bartas M., Brázda V., Bohálová N., Cantara A., Volná A., Stachurová T., Malachová K., Jagelská E.B., Porubiaková O., Červeň J., et al. In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-canonical Nucleic Acid Structures in Their Lifecycles. Front. Microbiol. 2020;11:1583. doi: 10.3389/fmicb.2020.01583. PubMed DOI PMC

Kusov Y., Tan J., Alvarez E., Enjuanes L., Hilgenfeld R. A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication–transcription complex. Virology. 2015;484:313–322. doi: 10.1016/j.virol.2015.06.016. PubMed DOI PMC

Ding Y., Fleming A.M., Burrows C.J. Case studies on potential G-quadruplex-forming sequences from the bacterial orders Deinococcales and Thermales derived from a survey of published genomes. Sci. Rep. 2018;8:15679. doi: 10.1038/s41598-018-33944-4. PubMed DOI PMC

Bartas M., Čutová M., Brázda V., Kaura P., Šťastný J., Kolomazník J., Coufal J., Goswami P., Červeň J., Pečinka P. The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria. Molecules. 2019;24:1711. doi: 10.3390/molecules24091711. PubMed DOI PMC

Brazda V., Fojta M., Bowater R.P. Structures and stability of simple DNA repeats from bacteria. Biochem. J. 2020;477:325–339. doi: 10.1042/BCJ20190703. PubMed DOI PMC

Ruggiero E., Richter S.N. Viral G-quadruplexes: New frontiers in virus pathogenesis and antiviral therapy. Annu. Rep. Med. Chem. 2020;54:101–131. doi: 10.1016/bs.armc.2020.04.001. PubMed DOI PMC

Saranathan N., Vivekanandan P. G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends Microbiol. 2019;27:148–163. doi: 10.1016/j.tim.2018.08.011. PubMed DOI PMC

Wang S.-R., Zhang Q.-Y., Wang J.-Q., Ge X.-Y., Song Y.-Y., Wang Y.-F., Li X.-D., Fu B.-S., Xu G.-H., Shu B., et al. Chemical Targeting of a G-Quadruplex RNA in the Ebola Virus L Gene. Cell Chem. Biol. 2016;23:1113–1122. doi: 10.1016/j.chembiol.2016.07.019. PubMed DOI

Jaubert C., Bedrat A., Bartolucci L., Di Primo C., Ventura M., Mergny J.-L., Amrane S., Andreola M.-L. RNA synthesis is modulated by G-quadruplex formation in Hepatitis C virus negative RNA strand. Sci. Rep. 2018;8:1–9. doi: 10.1038/s41598-018-26582-3. PubMed DOI PMC

Frasson I., Nadai M., Richter S.N. Conserved G-Quadruplexes Regulate the Immediate Early Promoters of Human Alphaherpesviruses. Molecules. 2019;24:2375. doi: 10.3390/molecules24132375. PubMed DOI PMC

Liu Y., Le C., Tyrrell D.L., Le X.C., Li X.-F. Aptamer Binding Assay for the E Antigen of Hepatitis B Using Modified Aptamers with G-Quadruplex Structures. Anal. Chem. 2020;92:6495–6501. doi: 10.1021/acs.analchem.9b05740. PubMed DOI

Murat P., Zhong J., Lekieffre L., Cowieson N.P., Clancy J.L., Preiss T., Balasubramanian S., Khanna R., Tellam J. G-quadruplexes regulate Epstein-Barr virus–encoded nuclear antigen 1 mRNA translation. Nat. Chem. Biol. 2014;10:358–364. doi: 10.1038/nchembio.1479. PubMed DOI PMC

Dabral P., Babu J., Zareie A., Verma S.C. LANA and hnRNP A1 Regulate the Translation of LANA mRNA through G-Quadruplexes. J. Virol. 2020;94:94. doi: 10.1128/JVI.01508-19. PubMed DOI PMC

Ruggiero E., Richter S.N. G-quadruplexes and G-quadruplex ligands: Targets and tools in antiviral therapy. Nucleic Acids Res. 2018;46:3270–3283. doi: 10.1093/nar/gky187. PubMed DOI PMC

De Cian A., Gros J., Guédin A., Haddi M., Lyonnais S., Guittat L., Riou J.-F., Trentesaux C., Saccà B., Lacroix L., et al. DNA and RNA Quadruplex ligands. Nucleic Acids Symp. Ser. 2008;52:7–8. doi: 10.1093/nass/nrn004. PubMed DOI

Lombardi E.P.P., Londoño-Vallejo A., Nicolas A. Relationship Between G-Quadruplex Sequence Composition in Viruses and Their Hosts. Molecules. 2019;24:1942. doi: 10.3390/molecules24101942. PubMed DOI PMC

Brázda V., Kolomazník J., Lýsek J., Bartas M., Fojta M., Šťastný J., Mergny J.-L. G4Hunter web application: A web server for G-quadruplex prediction. Bioinformatics. 2019;35:3493–3495. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC

Bedrat A., Lacroix L., Mergny J.-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC

Lombardi E.P., Londoño-Vallejo A. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 2020;48:1–15. doi: 10.1093/nar/gkaa033. PubMed DOI PMC

Lightfoot H.L., Hagen T., Tatum N.J., Hall J. The diverse structural landscape of quadruplexes. FEBS Lett. 2019;593:2083–2102. doi: 10.1002/1873-3468.13547. PubMed DOI

Guédin A., Gros J., Alberti P., Mergny J.-L. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 2010;38:7858–7868. doi: 10.1093/nar/gkq639. PubMed DOI PMC

Mihara T., Nishimura Y., Shimizu Y., Nishiyama H., Yoshikawa G., Uehara H., Hingamp P., Goto S., Ogata H. Linking Virus Genomes with Host Taxonomy. Viruses. 2016;8:66. doi: 10.3390/v8030066. PubMed DOI PMC

Ofir G., Sorek R. Contemporary Phage Biology: From Classic Models to New Insights. Cell. 2018;172:1260–1270. doi: 10.1016/j.cell.2017.10.045. PubMed DOI

Van Etten J.L., Dunigan D.D. Chloroviruses: Not your everyday plant virus. Trends Plant. Sci. 2012;17:1–8. doi: 10.1016/j.tplants.2011.10.005. PubMed DOI PMC

Hull R. Comparative Plant. Virology. 2nd ed. Elsevier; Amsterdam, The Netherlands: Academic Press; Boston, MA, USA: 2009.

Marcel V., Tran P.L., Sagne C., Martel-Planche G., Vaslin L., Teulade-Fichou M.-P., Hall J., Mergny J.-L., Hainaut P., Van Dyck E. G-quadruplex structures in TP53 intron 3: Role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis. 2010;32:271–278. doi: 10.1093/carcin/bgq253. PubMed DOI

Brázda V., Luo Y., Bartas M., Kaura P., Porubiaková O., Šťastný J., Pečinka P., Verga D., Da Cunha V., Takahashi T.S., et al. G-Quadruplexes in the Archaea Domain. Biomolecules. 2020;10:1349. doi: 10.3390/biom10091349. PubMed DOI PMC

Brázda V., Kolomazník J., Lýsek J., Hároníková L., Coufal J., Št’Astný J. Palindrome analyser—A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem. Biophys. Res. Commun. 2016;478:1739–1745. doi: 10.1016/j.bbrc.2016.09.015. PubMed DOI

Dhapola P., Chowdhury S. QuadBase2: Web server for multiplexed guanine quadruplex mining and visualization. Nucleic Acids Res. 2016;44:277–283. doi: 10.1093/nar/gkw425. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

G-quadruplexes in the evolution of hepatitis B virus

. 2023 Aug 11 ; 51 (14) : 7198-7204.

Impacts of Molecular Structure on Nucleic Acid-Protein Interactions

. 2022 Dec 26 ; 24 (1) : . [epub] 20221226

G-quadruplexes in helminth parasites

. 2022 Mar 21 ; 50 (5) : 2719-2735.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace