• This record comes from PubMed

Germline Variants of CYBA and TRPM4 Predispose to Familial Colorectal Cancer

. 2022 Jan 28 ; 14 (3) : . [epub] 20220128

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
Horizon 2020 European Union
CA17118 European Cooperation in Science and Technology

Familial colorectal cancer (CRC) is only partially explained by known germline predisposing genes. We performed whole-genome sequencing in 15 Polish families of many affected individuals, without mutations in known CRC predisposing genes. We focused on loss-of-function variants and functionally characterized them. We identified a frameshift variant in the CYBA gene (c.246delC) in one family and a splice site variant in the TRPM4 gene (c.25-1 G > T) in another family. While both variants were absent or extremely rare in gene variant databases, we identified four additional Polish familial CRC cases and two healthy elderly individuals with the CYBA variant (odds ratio 2.46, 95% confidence interval 0.48-12.69). Both variants led to a premature stop codon and to a truncated protein. Functional characterization of the variants showed that knockdown of CYBA or TRPM4 depressed generation of reactive oxygen species (ROS) in LS174T and HT-29 cell lines. Knockdown of TRPM4 resulted in decreased MUC2 protein production. CYBA encodes a component in the NADPH oxidase system which generates ROS and controls, e.g., bacterial colonization in the gut. Germline CYBA variants are associated with early onset inflammatory bowel disease, supported with experimental evidence on loss of intestinal mucus barrier function due to ROS deficiency. TRPM4 encodes a calcium-activated ion channel, which, in a human colonic cancer cell line, controls calcium-mediated secretion of MUC2, a major component of intestinal mucus barrier. We suggest that the gene defects in CYBA and TRPM4 mechanistically involve intestinal barrier integrity through ROS and mucus biology, which converges in chronic bowel inflammation.

See more in PubMed

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Frank C., Fallah M., Sundquist J., Hemminki A., Hemminki K. Population Landscape of Familial Cancer. Sci. Rep. 2015;5:12891. doi: 10.1038/srep12891. PubMed DOI PMC

Gupta S., Provenzale D., Regenbogen S.E., Hampel H., Slavin T.P., Hall M.J., Llor X., Chung D.C., Ahnen D.J., Bray T., et al. NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Colorectal, Version 3.2017. J. Natl. Compr. Cancer Netw. 2017;15:1465–1475. doi: 10.6004/jnccn.2017.0176. PubMed DOI

Lichtenstein P., Holm N.V., Verkasalo P.K., Iliadou A., Kaprio J., Koskenvuo M., Pukkala E., Skytthe A., Hemminki K. Environmental and heritable factors in the causation of cancer—Analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 2000;343:78–85. doi: 10.1056/NEJM200007133430201. PubMed DOI

Mucci L.A., Hjelmborg J.B., Harris J.R., Czene K., Havelick D.J., Scheike T., Graff R.E., Holst K., Moller S., Unger R.H., et al. Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA. 2016;315:68–76. doi: 10.1001/jama.2015.17703. PubMed DOI PMC

Valle L., de Voer R.M., Goldberg Y., Sjursen W., Forsti A., Ruiz-Ponte C., Caldes T., Garre P., Olsen M.F., Nordling M., et al. Update on genetic predisposition to colorectal cancer and polyposis. Mol. Asp. Med. 2019;69:10–26. doi: 10.1016/j.mam.2019.03.001. PubMed DOI

Bellido F., Pineda M., Aiza G., Valdes-Mas R., Navarro M., Puente D.A., Pons T., Gonzalez S., Iglesias S., Darder E., et al. POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: Review of reported cases and recommendations for genetic testing and surveillance. Genet. Med. 2016;18:325–332. doi: 10.1038/gim.2015.75. PubMed DOI PMC

Grolleman J.E., de Voer R.M., Elsayed F.A., Nielsen M., Weren R.D.A., Palles C., Ligtenberg M.J.L., Vos J.R., Ten Broeke S.W., de Miranda N., et al. Mutational Signature Analysis Reveals NTHL1 Deficiency to Cause a Multi-tumor Phenotype. Cancer Cell. 2019;35:256–266. doi: 10.1016/j.ccell.2018.12.011. PubMed DOI

Jaeger E., Leedham S., Lewis A., Segditsas S., Becker M., Cuadrado P.R., Davis H., Kaur K., Heinimann K., Howarth K., et al. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat. Genet. 2012;44:699–703. doi: 10.1038/ng.2263. PubMed DOI PMC

Buchanan D.D., Stewart J.R., Clendenning M., Rosty C., Mahmood K., Pope B.J., Jenkins M.A., Hopper J.L., Southey M.C., Macrae F.A., et al. Risk of colorectal cancer for carriers of a germ-line mutation in POLE or POLD1. Genet. Med. Off. J. Am. Coll. Med. Genet. 2018;20:890–895. doi: 10.1038/gim.2017.185. PubMed DOI PMC

Frank C., Fallah M., Ji J., Sundquist J., Hemminki K. The population impact of familial cancer, a major cause of cancer. Int. J. Cancer. 2014;134:1899–1906. doi: 10.1002/ijc.28510. PubMed DOI

Betge J., Schneider N.I., Harbaum L., Pollheimer M.J., Lindtner R.A., Kornprat P., Ebert M.P., Langner C. MUC1, MUC2, MUC5AC, and MUC6 in colorectal cancer: Expression profiles and clinical significance. Virchows Arch. 2016;469:255–265. doi: 10.1007/s00428-016-1970-5. PubMed DOI PMC

Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505:302–308. doi: 10.1038/nature12981. PubMed DOI PMC

Keller D.S., Windsor A., Cohen R., Chand M. Colorectal cancer in inflammatory bowel disease: Review of the evidence. Tech. Coloproctol. 2019;23:3–13. doi: 10.1007/s10151-019-1926-2. PubMed DOI

Lahiri D.K., Schnabel B. DNA isolation by a rapid method from human blood samples: Effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochem. Genet. 1993;31:321–328. doi: 10.1007/BF00553174. PubMed DOI

Wang K., Li M., Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. doi: 10.1093/nar/gkq603. PubMed DOI PMC

Liu X., Wu C., Li C., Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum. Mutat. 2016;37:235–241. doi: 10.1002/humu.22932. PubMed DOI PMC

Genomes Project C., Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., et al. A global reference for human genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393. PubMed DOI PMC

Smigielski E.M., Sirotkin K., Ward M., Sherry S.T. dbSNP: A database of single nucleotide polymorphisms. Nucleic Acids Res. 2000;28:352–355. doi: 10.1093/nar/28.1.352. PubMed DOI PMC

Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057. PubMed DOI PMC

Kumar A., Bandapalli O.R., Paramasivam N., Giangiobbe S., Diquigiovanni C., Bonora E., Eils R., Schlesner M., Hemminki K., Forsti A. Familial Cancer Variant Prioritization Pipeline version 2 (FCVPPv2) applied to a papillary thyroid cancer family. Sci. Rep. 2018;8:11635. doi: 10.1038/s41598-018-29952-z. PubMed DOI PMC

Thorvaldsdottir H., Robinson J.T., Mesirov J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2013;14:178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC

Kircher M., Witten D.M., Jain P., O’Roak B.J., Cooper G.M. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014;46:310–315. doi: 10.1038/ng.2892. PubMed DOI PMC

Roller E., Ivakhno S., Lee S., Royce T., Tanner S. Canvas: Versatile and scalable detection of copy number variants. Bioinformatics. 2016;32:2375–2377. doi: 10.1093/bioinformatics/btw163. PubMed DOI

Srivastava A., Giangiobbe S., Kumar A., Paramasivam N., Dymerska D., Behnisch W., Witzens-Harig M., Lubinski J., Hemminki K., Forsti A., et al. Identification of Familial Hodgkin Lymphoma Predisposing Genes Using Whole Genome Sequencing. Front. Bioeng. Biotechnol. 2020;8:179. doi: 10.3389/fbioe.2020.00179. PubMed DOI PMC

Yeo G., Burge C.B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 2004;11:377–394. doi: 10.1089/1066527041410418. PubMed DOI

Desmet F.O., Hamroun D., Lalande M., Collod-Beroud G., Claustres M., Beroud C. Human Splicing Finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67. doi: 10.1093/nar/gkp215. PubMed DOI PMC

Acedo A., Hernandez-Moro C., Curiel-Garcia A., Diez-Gomez B., Velasco E.A. Functional classification of BRCA2 DNA variants by splicing assays in a large minigene with 9 exons. Hum. Mutat. 2015;36:210–221. doi: 10.1002/humu.22725. PubMed DOI PMC

Bryksin A.V., Matsumura I. Overlap extension PCR cloning: A simple and reliable way to create recombinant plasmids. BioTechniques. 2010;48:463–465. doi: 10.2144/000113418. PubMed DOI PMC

Fraile-Bethencourt E., Diez-Gomez B., Velasquez-Zapata V., Acedo A., Sanz D.J., Velasco E.A. Functional classification of DNA variants by hybrid minigenes: Identification of 30 spliceogenic variants of BRCA2 exons 17 and 18. PLoS Genet. 2017;13:e1006691. doi: 10.1371/journal.pgen.1006691. PubMed DOI PMC

Bianchi B., Smith P.A., Abriel H. The ion channel TRPM4 in murine experimental autoimmune encephalomyelitis and in a model of glutamate-induced neuronal degeneration. Mol. Brain. 2018;11:41. doi: 10.1186/s13041-018-0385-4. PubMed DOI PMC

Tawiah A., Cornick S., Moreau F., Gorman H., Kumar M., Tiwari S., Chadee K. High MUC2 Mucin Expression and Misfolding Induce Cellular Stress, Reactive Oxygen Production, and Apoptosis in Goblet Cells. Am. J. Pathol. 2018;188:1354–1373. doi: 10.1016/j.ajpath.2018.02.007. PubMed DOI

Cobo E.R., Kissoon-Singh V., Moreau F., Holani R., Chadee K. MUC2 Mucin and Butyrate Contribute to the Synthesis of the Antimicrobial Peptide Cathelicidin in Response to Entamoeba histolytica- and Dextran Sodium Sulfate-Induced Colitis. Infect. Immun. 2017;85:e00905–e00916. doi: 10.1128/IAI.00905-16. PubMed DOI PMC

Fraile-Bethencourt E., Valenzuela-Palomo A., Diez-Gomez B., Caloca M.J., Gomez-Barrero S., Velasco E.A. Minigene Splicing Assays Identify 12 Spliceogenic Variants of BRCA2 Exons 14 and 15. Front. Genet. 2019;10:503. doi: 10.3389/fgene.2019.00503. PubMed DOI PMC

O’Neill S., Brault J., Stasia M.J., Knaus U.G. Genetic disorders coupled to ROS deficiency. Redox Biol. 2015;6:135–156. doi: 10.1016/j.redox.2015.07.009. PubMed DOI PMC

Stasia M.J. CYBA encoding p22(phox), the cytochrome b558 alpha polypeptide: Gene structure, expression, role and physiopathology. Gene. 2016;586:27–35. doi: 10.1016/j.gene.2016.03.050. PubMed DOI PMC

Gao Y., Liao P. TRPM4 channel and cancer. Cancer Lett. 2019;454:66–69. doi: 10.1016/j.canlet.2019.04.012. PubMed DOI

Aviello G., Knaus U.G. NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol. 2018;11:1011–1023. doi: 10.1038/s41385-018-0021-8. PubMed DOI

Cantero-Recasens G., Butnaru C.M., Brouwers N., Mitrovic S., Valverde M.A., Malhotra V. Sodium channel TRPM4 and sodium/calcium exchangers (NCX) cooperate in the control of Ca(2+)-induced mucin secretion from goblet cells. J. Biol. Chem. 2019;294:816–826. doi: 10.1074/jbc.RA117.000848. PubMed DOI PMC

Johansson M.E., Hansson G.C. Mucus and the goblet cell. Dig. Dis. 2013;31:305–309. doi: 10.1159/000354683. PubMed DOI PMC

Roos D. Chronic granulomatous disease. Br. Med. Bull. 2016;118:50–63. doi: 10.1093/bmb/ldw009. PubMed DOI PMC

Alimchandani M., Lai J.P., Aung P.P., Khangura S., Kamal N., Gallin J.I., Holland S.M., Malech H.L., Heller T., Miettinen M., et al. Gastrointestinal histopathology in chronic granulomatous disease: A study of 87 patients. Am. J. Surg. Pathol. 2013;37:1365–1372. doi: 10.1097/PAS.0b013e318297427d. PubMed DOI PMC

Ashton J.J., Andreoletti G., Coelho T., Haggarty R., Batra A., Afzal N.A., Beattie R.M., Ennis S. Identification of Variants in Genes Associated with Single-gene Inflammatory Bowel Disease by Whole-exome Sequencing. Inflamm. Bowel Dis. 2016;22:2317–2327. doi: 10.1097/MIB.0000000000000890. PubMed DOI

Denson L.A., Jurickova I., Karns R., Shaw K.A., Cutler D.J., Okou D.T., Dodd A., Quinn K., Mondal K., Aronow B.J., et al. Clinical and Genomic Correlates of Neutrophil Reactive Oxygen Species Production in Pediatric Patients with Crohn’s Disease. Gastroenterology. 2018;154:2097–2110. doi: 10.1053/j.gastro.2018.02.016. PubMed DOI PMC

Johansson M.E. Mucus layers in inflammatory bowel disease. Inflamm. Bowel Dis. 2014;20:2124–2131. doi: 10.1097/MIB.0000000000000117. PubMed DOI

Wenzel U.A., Magnusson M.K., Rydstrom A., Jonstrand C., Hengst J., Johansson M.E., Velcich A., Ohman L., Strid H., Sjovall H., et al. Spontaneous colitis in Muc2-deficient mice reflects clinical and cellular features of active ulcerative colitis. PLoS ONE. 2014;9:e100217. doi: 10.1371/journal.pone.0100217. PubMed DOI PMC

Velcich A., Yang W., Heyer J., Fragale A., Nicholas C., Viani S., Kucherlapati R., Lipkin M., Yang K., Augenlicht L. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science. 2002;295:1726–1729. doi: 10.1126/science.1069094. PubMed DOI

Aviello G., Singh A.K., O’Neill S., Conroy E., Gallagher W., D’Agostino G., Walker A.W., Bourke B., Scholz D., Knaus U.G. Colitis susceptibility in mice with reactive oxygen species deficiency is mediated by mucus barrier and immune defense defects. Mucosal Immunol. 2019;12:1316–1326. doi: 10.1038/s41385-019-0205-x. PubMed DOI

Carvalho L., Gomes J.R.M., Tavares L.C., Xavier A.R., Klika K.D., Holmdahl R., Carvalho R.A., Souto-Carneiro M.M. Reactive Oxygen Species Deficiency Due to Ncf1-Mutation Leads to Development of Adenocarcinoma and Metabolomic and Lipidomic Remodeling in a New Mouse Model of Dextran Sulfate Sodium-Induced Colitis. Front. Immunol. 2018;9:701. doi: 10.3389/fimmu.2018.00701. PubMed DOI PMC

Kappel S., Stoklosa P., Hauert B., Ross-Kaschitza D., Borgstrom A., Baur R., Galvan J.A., Zlobec I., Peinelt C. TRPM4 is highly expressed in human colorectal tumor buds and contributes to proliferation, cell cycle, and invasion of colorectal cancer cells. Mol. Oncol. 2019;13:2393–2405. doi: 10.1002/1878-0261.12566. PubMed DOI PMC

Guo J., She J., Zeng W., Chen Q., Bai X.C., Jiang Y. Structures of the calcium-activated, non-selective cation channel TRPM4. Nature. 2017;552:205–209. doi: 10.1038/nature24997. PubMed DOI PMC

Mukhopadhyay S., Vander Heiden M.G., McCormick F. The Metabolic Landscape of RAS-Driven Cancers from biology to therapy. Nat. Cancer. 2021;2:271–283. doi: 10.1038/s43018-021-00184-x. PubMed DOI PMC

Gundamaraju R., Chong W.C. Consequence of distinctive expression of MUC2 in colorectal cancers: How much is actually bad? Biochim. Biophys. Acta Rev. Cancer. 2021;1876:188579. doi: 10.1016/j.bbcan.2021.188579. PubMed DOI

Wieszczy P., Kaminski M.F., Franczyk R., Loberg M., Kobiela J., Rupinska M., Kocot B., Rupinski M., Holme O., Wojciechowska U., et al. Colorectal Cancer Incidence and Mortality After Removal of Adenomas During Screening Colonoscopies. Gastroenterology. 2020;158:875–883. e5. doi: 10.1053/j.gastro.2019.09.011. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...