Identification of Familial Hodgkin Lymphoma Predisposing Genes Using Whole Genome Sequencing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32211398
PubMed Central
PMC7067901
DOI
10.3389/fbioe.2020.00179
Knihovny.cz E-zdroje
- Klíčová slova
- familial Hodgkin lymphoma, genetic predisposition to disease, germline variants, next generation sequencing, predisposing genes, variant prioritization, whole genome sequencing,
- Publikační typ
- časopisecké články MeSH
Hodgkin lymphoma (HL) is a lymphoproliferative malignancy of B-cell origin that accounts for 10% of all lymphomas. Despite evidence suggesting strong familial clustering of HL, there is no clear understanding of the contribution of genes predisposing to HL. In this study, whole genome sequencing (WGS) was performed on 7 affected and 9 unaffected family members from three HL-prone families and variants were prioritized using our Familial Cancer Variant Prioritization Pipeline (FCVPPv2). WGS identified a total of 98,564, 170,550, and 113,654 variants which were reduced by pedigree-based filtering to 18,158, 465, and 26,465 in families I, II, and III, respectively. In addition to variants affecting amino acid sequences, variants in promoters, enhancers, transcription factors binding sites, and microRNA seed sequences were identified from upstream, downstream, 5' and 3' untranslated regions. A panel of 565 cancer predisposing and other cancer-related genes and of 2,383 potential candidate HL genes were also screened in these families to aid further prioritization. Pathway analysis of segregating genes with Combined Annotation Dependent Depletion Tool (CADD) scores >20 was performed using Ingenuity Pathway Analysis software which implicated several candidate genes in pathways involved in B-cell activation and proliferation and in the network of "Cancer, Hematological disease and Immunological Disease." We used the FCVPPv2 for further in silico analyses and prioritized 45 coding and 79 non-coding variants from the three families. Further literature-based analysis allowed us to constrict this list to one rare germline variant each in families I and II and two in family III. Functional studies were conducted on the candidate from family I in a previous study, resulting in the identification and functional validation of a novel heterozygous missense variant in the tumor suppressor gene DICER1 as potential HL predisposition factor. We aim to identify the individual genes responsible for predisposition in the remaining two families and will functionally validate these in further studies.
Division of Molecular Genetic Epidemiology German Cancer Research Center Heidelberg Germany
Division of Pediatric Neurooncology German Cancer Research Center Heidelberg Germany
Faculty of Medicine and Biomedical Center in Pilsen Charles University Prague Pilsen Czechia
Zobrazit více v PubMed
Ackermann A., Brieger A. (2019). The role of nonerythroid spectrin αII in cancer. J. Oncol. 2019:7079604. 10.1155/2019/7079604 PubMed DOI PMC
Agarwal V., Bell G. W., Nam J. W., Bartel D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, 1–14. 10.7554/eLife.05005.028 PubMed DOI PMC
Bandapalli O. R., Paramasivam N., Giangiobbe S., Kumar A., Benisch W., Engert A., et al. . (2018). Whole genome sequencing reveals DICER1 as a candidate predisposing gene in familial Hodgkin lymphoma. Int J Cancer 143, 2076–2078. 10.1002/ijc.31576 PubMed DOI
Banerjee S., Kaye S. B., Ashworth A. (2010). Making the best of PARP inhibitors in ovarian cancer. Nat. Rev. Clin. Oncol. 7, 508–519. 10.1038/nrclinonc.2010.116 PubMed DOI
Betel D., Koppal A., Agius P., Sander C., Leslie C. (2010). Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11:R90. 10.1186/gb-2010-11-8-r90 PubMed DOI PMC
Birney E., Stamatoyannopoulos J. A., Dutta A., Guigó R., Gingeras T. R., Margulies E. H., et al. . (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816. 10.1038/nature05874 PubMed DOI PMC
Boyle A. P., Hong E. L., Hariharan M., Cheng Y., Schaub M. A., Kasowski M., et al. . (2012). Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797. 10.1101/gr.137323.112 PubMed DOI PMC
Buggy J. J., Elias L. (2012). Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int. Rev. Immunol. 31, 119–132. 10.3109/08830185.2012.664797 PubMed DOI
Chen X., Li Y., Ouyang T., Li J., Wang T., Fan Z., et al. . (2018). Associations between RAD51D germline mutations and breast cancer risk and survival in BRCA1/2-negative breast cancers. Ann. Oncol. 29, 2046–2051. 10.1093/annonc/mdy338 PubMed DOI
Cooper G. M., Stone E. A., Asimenos G., Program N. C. S., Green E. D., Batzoglou S., et al. . (2005). Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15, 901–913. 10.1101/gr.3577405 PubMed DOI PMC
Cozen W., Timofeeva M. N., Li D., Diepstra A., Hazelett D., Delahaye-Sourdeix M., et al. . (2014). A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3 as a novel susceptibility locus. Nat. Commun. 5:3856. 10.1038/ncomms4856 PubMed DOI PMC
Cybulski C., Wokolorczyk D., Huzarski T., Byrski T., Gronwald J., Gorski B., et al. . (2006). A large germline deletion in the Chek2 kinase gene is associated with an increased risk of prostate cancer. J. Med. Genet. 43, 863–866. 10.1136/jmg.2006.044974 PubMed DOI PMC
Dayem Ullah A. Z., Oscanoa J., Wang J., Nagano A., Lemoine N. R., Chelala C. (2018). SNPnexus: assessing the functional relevance of genetic variation to facilitate the promise of precision medicine. Nucleic Acids Res. 46, W109–W113. 10.1093/nar/gky399 PubMed DOI PMC
Diehl V., Thomas R. K., Re D. (2004). Part II: Hodgkin's lymphoma–diagnosis and treatment. Lancet Oncol. 5, 19–26. 10.1016/S1470-2045(03)01320-2 PubMed DOI
Diepstra A., Niens M., Vellenga E., Van Imhoff G. W., Nolte I. M., Schaapveld M., et al. . (2005). Association with HLA class I in Epstein-Barr-virus-positive and with HLA class III in Epstein-Barr-virus-negative Hodgkin's lymphoma. Lancet 365, 2216–2224. 10.1016/S0140-6736(05)66780-3 PubMed DOI
Dreyling M., Santoro A., Mollica L., Leppa S., Follows G. A., Lenz G., et al. . (2017). Phosphatidylinositol 3-kinase inhibition by copanlisib in relapsed or refractory indolent lymphoma. J. Clin. Oncol. 35, 3898–3905. 10.1200/JCO.2017.75.4648 PubMed DOI
Frampton M., Da Silva Filho M. I., Broderick P., Thomsen H., Forsti A., Vijayakrishnan J., et al. . (2013). Variation at 3p24.1 and 6q23.3 influences the risk of Hodgkin's lymphoma. Nat. Commun. 4:2549. 10.1038/ncomms3549 PubMed DOI PMC
Ge J., Yu Y., Xin F., Yang Z. J., Zhao H. M., Wang X., et al. . (2017). Downregulation of delta-aminolevulinate dehydratase is associated with poor prognosis in patients with breast cancer. Cancer Sci. 108, 604–611. 10.1111/cas.13180 PubMed DOI PMC
Kharazmi E., Fallah M., Pukkala E., Olsen J. H., Tryggvadottir L., Sundquist K., et al. . (2015). Risk of familial classical Hodgkin lymphoma by relationship, histology, age, and sex: a joint study from five Nordic countries. Blood 126, 1990–1995. 10.1182/blood-2015-04-639781 PubMed DOI
Kircher M., Witten D. M., Jain P., O'roak B. J., Cooper G. M., Shendure J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315. 10.1038/ng.2892 PubMed DOI PMC
Kopanos C., Tsiolkas V., Kouris A., Chapple C. E., Albarca Aguilera M., Meyer R., et al. . (2018). VarSome: the human genomic variant search engine. Bioinformatics 35, 1978–1980. 10.1093/bioinformatics/bty897 PubMed DOI PMC
Kumar A., Bandapalli O. R., Paramasivam N., Giangiobbe S., Diquigiovanni C., Bonora E., et al. . (2018). Familial cancer variant prioritization pipeline version 2 (FCVPPv2) applied to a papillary thyroid cancer family. Sci. Rep. 8:11635. 10.1038/s41598-018-29952-z PubMed DOI PMC
Kuppers R. (2009). The biology of Hodgkin's lymphoma. Nat. Rev. Cancer 9, 15–27. 10.1038/nrc2542 PubMed DOI
Kushekhar K., Van Den Berg A., Nolte I., Hepkema B., Visser L., Diepstra A. (2014). Genetic associations in classical hodgkin lymphoma: a systematic review and insights into susceptibility mechanisms. Cancer Epidemiol. Biomarkers Prev. 23:2737–2747. 10.1158/1055-9965.EPI-14-0683 PubMed DOI
Lek M., Karczewski K. J., Minikel E. V., Samocha K. E., Banks E., Fennell T., et al. . (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291. 10.1038/nature19057 PubMed DOI PMC
Li H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993. 10.1093/bioinformatics/btr509 PubMed DOI PMC
Li H., Durbin R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Liu D., Mamorska-Dyga A. (2017). Syk inhibitors in clinical development for hematological malignancies. J. Hematol. Oncol. 10:145. 10.1186/s13045-017-0512-1 PubMed DOI PMC
Liu X., Wu C., Li C., Boerwinkle E. (2016). dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum. Mutat. 37, 235–241. 10.1002/humu.22932 PubMed DOI PMC
Loveday C., Turnbull C., Ramsay E., Hughes D., Ruark E., Frankum J. R., et al. . (2011). Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat. Genet. 43, 879–882. 10.1038/ng.893 PubMed DOI PMC
Ma L. J., Wu W. J., Wang Y. H., Wu T. F., Liang P. I., Chang I. W., et al. . (2016). SPOCK1 overexpression confers a poor prognosis in urothelial carcinoma. J. Cancer 7, 467–476. 10.7150/jca.13625 PubMed DOI PMC
Mcmaster M. L., Sun C., Landi M. T., Savage S. A., Rotunno M., Yang X. R., et al. . (2018). Germline mutations in protection of telomeres 1 in two families with Hodgkin lymphoma. Br. J. Haematol. 181, 372–377. 10.1111/bjh.15203 PubMed DOI PMC
Ngan E., Kiepas A., Brown C. M., Siegel P. M. (2018). Emerging roles for LPP in metastatic cancer progression. J. Cell Commun. Signal. 12, 143–156. 10.1007/s12079-017-0415-5 PubMed DOI PMC
Palles C., Cazier J. B., Howarth K. M., Domingo E., Jones A. M., Broderick P., et al. . (2013). Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 45, 136–144. 10.1038/ng.2503 PubMed DOI PMC
Petrovski S., Wang Q., Heinzen E. L., Allen A. S., Goldstein D. B. (2013). Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 9:e1003709. 10.1371/annotation/32c8d343-9e1d-46c6-bfd4-b0cd3fb7a97e PubMed DOI PMC
Pollard K. S., Hubisz M. J., Rosenbloom K. R., Siepel A. (2010). Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121. 10.1101/gr.097857.109 PubMed DOI PMC
Rimmer A., Phan H., Mathieson I., Iqbal Z., Twigg S. R. F., Consortium W. G. S., et al. . (2014). Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 46, 912–918. 10.1038/ng.3036 PubMed DOI PMC
Ristolainen H., Kilpivaara O., Kamper P., Taskinen M., Saarinen S., Leppa S., et al. . (2015). Identification of homozygous deletion in ACAN and other candidate variants in familial classical Hodgkin lymphoma by exome sequencing. Br. J. Haematol. 170, 428–431. 10.1111/bjh.13295 PubMed DOI
Rotunno M., Mcmaster M. L., Boland J., Bass S., Zhang X., Burdett L., et al. . (2016). Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene. Haematologica 101, 853–860. 10.3324/haematol.2015.135475 PubMed DOI PMC
Saarinen S., Aavikko M., Aittomaki K., Launonen V., Lehtonen R., Franssila K., et al. . (2011). Exome sequencing reveals germline NPAT mutation as a candidate risk factor for Hodgkin lymphoma. Blood 118, 493–498. 10.1182/blood-2011-03-341560 PubMed DOI
Salipante S. J., Mealiffe M. E., Wechsler J., Krem M. M., Liu Y., Namkoong S., et al. . (2009). Mutations in a gene encoding a midbody kelch protein in familial and sporadic classical Hodgkin lymphoma lead to binucleated cells. Proc. Natl. Acad. Sci. U.S.A. 106, 14920–14925. 10.1073/pnas.0904231106 PubMed DOI PMC
Siepel A., Bejerano G., Pedersen J. S., Hinrichs A. S., Hou M., Rosenbloom K., et al. . (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050. 10.1101/gr.3715005 PubMed DOI PMC
Smigielski E. M., Sirotkin K., Ward M., Sherry S. T. (2000). dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res. 28, 352–355. 10.1093/nar/28.1.352 PubMed DOI PMC
Srivastava A., Kumar A., Giangiobbe S., Bonora E., Hemminki K., Forsti A., et al. . (2019). Whole genome sequencing of familial non-medullary thyroid cancer identifies germline alterations in MAPK/ERK and PI3K/AKT signaling pathways. Biomolecules 9:E605. 10.3390/biom9100605 PubMed DOI PMC
Tan D. E. K., Foo J. N., Bei J.-X., Chang J., Peng R., Zheng X., et al. . (2013). Genome-wide association study of B cell non-Hodgkin lymphoma identifies 3q27 as a susceptibility locus in the Chinese population. Nat. Genet. 45:804. 10.1038/ng.2666 PubMed DOI
The Genomes Project Consortium. Auton A., Abecasis G. R., Altshuler D. M., Durbin R. M., Abecasis G. R., et al. . (2015). A global reference for human genetic variation. Nature 526, 68–74. 10.1038/nature15393 PubMed DOI PMC
Valla K., Flowers C. R., Koff J. L. (2018). Targeting the B cell receptor pathway in non-Hodgkin lymphoma. Expert Opin. Investig. Drugs 27, 513–522. 10.1080/13543784.2018.1482273 PubMed DOI PMC
Wang K., Li M., Hakonarson H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38:e164. 10.1093/nar/gkq603 PubMed DOI PMC
Ward L. D., Kellis M. (2012). HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934. 10.1093/nar/gkr917 PubMed DOI PMC
Wong K., Robles-Espinoza C. D., Rodriguez D., Rudat S. S., Puig S., Potrony M., et al. . (2019). Association of the POT1 germline missense variant p.I78T with familial melanoma. JAMA Dermatol. 155, 604–609. 10.1001/jamadermatol.2018.3662 PubMed DOI PMC
Zhang J., Walsh M. F., Wu G., Edmonson M. N., Gruber T. A., Easton J., et al. . (2015). Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 373, 2336–2346. 10.1056/NEJMoa1508054 PubMed DOI PMC
Germline Variants of CYBA and TRPM4 Predispose to Familial Colorectal Cancer