next generation sequencing
Dotaz
Zobrazit nápovědu
Technologie sekvenování DNA nové generace mají v současné době nezastupitelné místo ve výzkumu a postupně nacházejí cestu i do oblasti klinické praxe. Sekvenační přístroje produkují velké množství dat, jejichž analýza metodami bioinformatiky je nezbytná k získání relevantních výsledků. Sekvenování se tak bez pokročilého výpočetního zpracování specializovanými algoritmy naprosto neobejde. V tomto přehledu jsou představeny základní koncepty výpočetního zpracování sekvenačních dat s přihlédnutím ke specifickým aspektům oblasti onkologie. Rovněž jsou uvedeny nejčastější problémy a překážky komplikující zpracování a biologickou interpretaci výsledků.
Next-generation sequencing technologies are currently well‑established in the research field and progressively find their way towards clinical applications. Sequencers produce vast amounts of data and therefore bioinformatics methods are needed for processing. Without computational methods, sequencing would not be able to produce relevant biological information. In this review, we introduce the basics of common NGS‑related bioinformatics methods used in oncological research. We also state some of the common problems complicating data processing and interpretation of the results. Key words: bioinformatics – high‑throughput nucleotide sequencing – mutations – cancer research – clinical application This study was supported by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101), by the project MEYS – NPS I – LO1413, MH CZ – DRO (MMCI, 00209805) and BBMRI_CZ (LM2010004). The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers. Submitted: 21. 4. 2015 Accepted: 26. 6. 2015
- Klíčová slova
- technologie masivně paralelního sekvenování, referenční genom,
- MeSH
- genom MeSH
- interpretace statistických dat MeSH
- lidé MeSH
- nádory genetika MeSH
- výpočetní biologie * MeSH
- vysoce účinné nukleotidové sekvenování * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Metagenomic high-throughput sequencing (mHTS) is a hypothesis-free, universal pathogen detection technique for determination of the DNA/RNA sequences in a variety of sample types and infectious syndromes. mHTS is still in its early stages of translating into clinical application. To support the development, implementation and standardization of mHTS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established. The aim of ENNGS is to bring together professionals involved in mHTS for viral diagnostics to share methodologies and experiences, and to develop application recommendations. This manuscript aims to provide practical recommendations for the wet lab procedures necessary for implementation of mHTS for virus diagnostics and to give recommendations for development and validation of laboratory methods, including mHTS quality assurance, control and quality assessment protocols.
- MeSH
- metagenomika * MeSH
- viry * genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
Sekvenování nové generace, nazývané také masivně paralelní sekvenování (MPS), je v současnosti nejrychleji se rozvíjející metodou molekulární genetiky, která přinese zlom v oblasti personalizované medicíny. V tomto přehledu stručně popisujeme hlavní typy MPS, kterými jsou celogenomová a exomová sekvenace, sekvenace transkriptomu a amplikonové sekvenování. Dále je uveden souhrn výhod, nevýhod a možných aplikací technologií nabízených v současnosti v České republice.
Next generation or massive parallel sequencing (MPS) is a rapidly advancing method in molecular genetics that will bring significant changes in the personalized medicine field. In this review we briefly describe major types of MPS, including whole-genome, -exome, -transcriptome and amplicon sequencing. We also present an overview of the advantages, drawbacks and possible applications of sequencing technologies available in the Czech Republic.
- Klíčová slova
- masivně paralelní sekvenování, amplikonové sekvenování, sekvenování nové generace,
- MeSH
- exom MeSH
- lidé MeSH
- sekvenční analýza DNA * ekonomika přístrojové vybavení trendy MeSH
- sekvenční analýza RNA metody MeSH
- transkriptom MeSH
- vysoce účinné nukleotidové sekvenování * ekonomika metody přístrojové vybavení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Chronická lymfocytární leukemie (CLL) patří mezi onemocnění, u nichž se po dlouhou dobu nedařilo identifikovat genové mutace, které souvisí s jejich vznikem a progresí. Nedostatečné pochopení patogeneze CLL zpomalovalo pokrok na poli cílené léčby. V nedávné době bylo publikováno několik klíčových prací, které s využitím přístupů „vysokokapacitního sekvenování nové generace“ (Next Generation Sequencing – NGS) popsaly mutace v cca 15 protein-kódujících genech potenciálně důležitých v biologii CLL. V následujícím přehledovém článku shrnujeme doposud získaná data a jejich relevanci pro patogenezi a prognózu CLL.
For a long time, there has been little success in identifying gene mutations responsible for disease onset and progression in chronic lymphocytic leukaemia (CLL). Our insufficient understanding of CLL pathogenesis has impaired the development of targeted therapy. Several recent publications using Next Generation Sequencing technology have now identified mutations in approximately fifteen protein-coding genes that may be relevant for CLL biology. In this review, we summarize the data acquired thus far and its relative importance for CLL pathogenesis and prognosis.
- Klíčová slova
- CLL, SF3B1, NOTCH1, MYD88, sekvenování nové generace, NGS,
- MeSH
- analýza přežití MeSH
- chronická lymfatická leukemie diagnóza genetika MeSH
- diferenciační antigeny genetika imunologie izolace a purifikace MeSH
- financování organizované MeSH
- fosfoproteiny genetika imunologie izolace a purifikace MeSH
- genetický výzkum MeSH
- geny p53 genetika imunologie MeSH
- lidé MeSH
- malý jaderný ribonukleoprotein U2 genetika imunologie izolace a purifikace MeSH
- mutace genetika imunologie MeSH
- prognóza MeSH
- proteiny buněčného cyklu genetika imunologie izolace a purifikace MeSH
- receptor Notch1 genetika imunologie izolace a purifikace MeSH
- statistika jako téma MeSH
- vysoce účinné nukleotidové sekvenování metody využití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Metoda masivně paralelního sekvenování umožnila rychlejší a ekonomičtější výzkum v oblasti genomiky. Tato technologie umožňuje osekvenovat kompletní lidský genom za zlomek ceny i času v porovnání s doposud používanou Sangerovou metodou. Zavedení této techniky do oblasti onkologického výzkumu významně přispělo k molekulární charakterizaci nádorů a hlubšímu porozumění jejich evoluce. Pomocí masivně paralelního sekvenování byly identifikovány nové kauzální mutace, které jsou podstatou nádorových dědičných syndromů, porovnáním sekvenování DNA nádorové a příslušné zdravé tkáně byly odhaleny nové mutace a strukturní aberace u více než 15 rozdílných nádorových onemocnění. V tomto přehledu jsou uvedeny technické charakteristiky nejrozšířenějších sekvenačních platforem, krátce shrnuty jejich výhody a nevýhody a popsány možnosti uplatnění v klinické praxi.
Development of new sequencing methods allowed faster and more economical genomic research. With these technologies, it is now possible to determine the complete sequence of human genome in a short time period and at a relatively low cost. Introduction of next generation sequencing methods to cancer research provided a comprehensive molecular characterization of cancers and enabled deeper insights into tumor complexity, heterogeneity and evolution. Next generation technologies have been applied to identify new causal mutations in genes in hereditary cancer syndromes. More than 15 various tumor types have been already sequenced and compared to that of normal cells allowing identification of new cancer driving mutations and genome structural rearrangements. In this review, we describe technical characteristics of main next generation sequencing platforms, briefly overview their pros and cons and clinical perspective. Key words: high‑throughput nucleotide sequencing – genomics – mutations – cancer research – clinical application – personalized treatment This work was supported by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101) and by MH CZ – DRO (MMCI, 00209805). The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers. Submitted: 4. 2. 2014 Accepted: 1. 4. 2014
- Klíčová slova
- technologie masivně paralelního sekvenování, onkologický výzkum, Roche 454, SOLiD, single-molecule sekvenování, Solexa,
- MeSH
- genetické testování MeSH
- genom lidský MeSH
- genomika * metody MeSH
- individualizovaná medicína MeSH
- lidé MeSH
- mutace * genetika MeSH
- nádory * diagnóza genetika MeSH
- sekvenční analýza DNA metody MeSH
- sekvenční analýza RNA metody MeSH
- vysoce účinné nukleotidové sekvenování * metody přístrojové vybavení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
Syndrom náhlého úmrtí kojence je definován jako náhlá a neočekávaná smrt kojence, kterou neobjasní detailní anamnéza, ohledání místa úmrtí ani pitva. Přestože mají tato úmrtí společný patogenetický mechanismus, ani recentní genetické analýzy založené na sekvenování nové generace jednotnou genetickou příčinu neodhalily. Přibližně u 10 % těchto kojenců lze vystopovat dominantní vliv patogenní varianty v jednom z řady kandidátních genů. Jedná se především o geny kódující iontové kanály v srdci, jejichž poruchy způsobují vrozené arytmické syndromy, například syndrom dlouhého QT intervalu nebo katechola-minergní polymorfní komorovou tachykardii. Jejich dědičnost je zpravidla autosomálně dominantní a existuje tedy zvýšené riziko onemocnění a náhlého úmrtí u prvostupňových příbuzných. Proto je v současné době doporučeno kardiologické vyšetření prvostupňových příbuzných zemřelého a genetické vyšetření post mortem zaměřené právě na vrozené arytmické syndromy. Mezi další kandidátní geny patří například geny pro sodíkové iontové kanály v respiračních kosterních svalech a v mozku, pro mineralokortikoidní receptor a geny kódující enzymy, které se podílejí na adrenální steroidogenezi. Interpretace molekulárně genetického vyšetření post mortem musí být velmi opatrná. Pouze skutečně patogenní nálezy, a to vždy v korelaci s klinickým nálezem u příbuzných, lze využít pro genetické poradenství v rodině.
Sudden infant death syndrome is defined as sudden and unexpected death of an infant that remains unexplained after thorough investigation of the scene of death, medical history and autopsy. Although a common final pathogenic pathway of these deaths is assumed, even recent studies based on next generation sequencing failed to reveal a single genetic cause. Predominant role of a pathogenic variant in one of the candidate genes may be traced in approximately 10% of these infants. The candidate genes include genes encoding ion channels in the heart that lead to inherited primary arrhythmia syndromes (cardiac channelopathies), for example long QT syndrome and catecholaminergic polymorphic ventricular tachycardia. Their inheritance is mostly autosomal dominant with an increased risk of the disease associated with sudden death for first-degree relatives. Therefore a thorough cardiological examination of first-degree relatives and post-mortem molecular testing of the cardiac channelopathies are recommended. Other candidate genes include genes for sodium channels in the respiratory skeletal muscles and brain or genes encoding mineralocorticoid receptor or enzymes involved in adrenal steroidogenesis. Results of post-mortem genetic testing, especially in cases of sudden infant death syndrome, must be interpreted with caution. Only strictly assessed pathogenic variants may be used for genetic counseling in the family, always in correlation with clinical findings.
- MeSH
- genetická predispozice k nemoci MeSH
- kojenec MeSH
- lidé MeSH
- náhlá smrt kojenců * genetika MeSH
- srdeční arytmie genetika MeSH
- vrozené srdeční vady genetika MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Molekulární metody pro detekci translokací byly postupně začleněny do rutinní diagnostiky nádorových onemocnění. Konvenční metody, jako je fluorescenční in situ hybridizace (FISH) a reverzně transkriptázová-PCR, však mají i některé nevýhody. Sekvenování nové generace (NGS) může poskytnout citlivou detekci alterací mnoha genů. RNA NGS na principu Anchored multiplex PCR se ukázalo jako rychlý a snadno analyzovatelný přístup pro laboratoře rutinní diagnostiky. Archer FusionPlex panely jsou přínosné jak v diagnostice nádorů, tak v identifikaci nových fúzních genů. NGS je užitečný nástroj při identifikaci cílitelných molekulárních změn (bodové mutace, fúzní geny atd.). U pacientů s pokročilým onemocněním může NGS napomoci k zařazení těchto pacientů k léčbě na základě stanovení rizikových markerů (risk udapted therapy) a/nebo při průkazu léčebného cíle k cílené léčbě.
Molecular assays for translocation detection in different tumors have gradually been incorporated into routine diagnostics. However, conventional methods such as fluorescence in situ hybridization (FISH) and reverse transcriptase-PCR come with several drawbacks. Next-generation sequencing (NGS) can provide in-depth detection of numerous gene alterations. The anchored multiplex PCR assay proved to be a fast and easy-to-analyze approach for routine diagnostics laboratories. Next-generation sequencing-based anchored multiplex PCR technique (Archer FusionPlex Panels) is beneficial in both diagnosis for patient care and in identification of a novel fusion breakpoint in tumors. NGS is useful in identifying targetable molecular changes (point mutations, fusion genes, etc.) in tumors that can serve as a rationale for inclusion of patients with advanced disease in ongoing clinical trials and allow for better risk stratification.
- Klíčová slova
- fúzní geny,
- MeSH
- cílená molekulární terapie MeSH
- diagnostické zobrazování MeSH
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- nádory * diagnóza terapie MeSH
- předškolní dítě MeSH
- výsledek terapie MeSH
- vysoce účinné nukleotidové sekvenování * metody MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
- přehledy MeSH
Abscesses are often clinically manifested as local necrotic tissues in various organs or systems of the human body, which is commonly caused by microbial infection. Rapid and accurate identification of pathogens from clinical abscetic samples would greatly guide a clinician to make the precise choices of the antimicrobial treatment. Here, this study aimed to investigate the application of metagenomic next-generation sequencing (mNGS) in the microbial detection of clinical samples of abscess fluids from various organs or systems. Nine patients with abscess from various organs or systems were enrolled in this study. The pathogenic bacteria in abscess fluid were detected and compared by the conventional bacterial culture and mNGS respectively. The dominant pathogens of abscess fluids in 8 cases can be found directly from mNGS, dominating over 80% of the total reads abundance of the microbiome. Although the pathogens from 6 cases detected by mNGS were consistent with that from the conventional bacteria culture method, the fastidious obligate anaerobic bacteria in 2 cases additionally detected by mNGS were not found by the conventional culture method. Moreover, complex polymicrobial infection containing Parvimonas micra in one case negatively with conventional bacterial culture were demonstrated by the mNGS method. And the mNGS method can directly reflect the diversity of microbial ecology in the abscess fluids from the different parts of the human body. Conclusively, mNGS can be used as a supplemental method for the pathogen detection of clinically abscess fluids.
- MeSH
- absces * diagnóza MeSH
- Firmicutes MeSH
- lidé MeSH
- metagenomika * MeSH
- senzitivita a specificita MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Sekvenování DNA patří již řadu let ke standardním postupům při molekulárně-genetických analýzách biologického materiálu. V medicíně nachází široké uplatnění, zejména v oblasti diagnostiky dědičných chorob a nádorových onemocnění, přičemž rozvoj DNA diagnostiky byl významně podpořen zveřejněním sekvence lidského genomu v roce 2001. V posledních několika letech dochází k rychlému technologickému rozvoji nových sekvenačních technologií, který umožnil vznik sekvenátorů nové generace („tzv. New Generation Sequencing“). Nové technologie založené na principu masivního paralelního sekvenování (např. Roche/454, Illumina Genome Analyzer IIx, Life Technologies SOLiD 3 a další) umožňují zásadní navýšení kapacity sekvenátorů a výrazné snížení ceny. Tento významný technologický pokrok umožnil rozvoj celogenomového sekvenování včetně analýz individuálních lidských genomů a nastartoval rozvoj personální genomiky. První osekvenované individuální lidské genomy patřily významným genetikům J. C. Venterovi (2007) a J. D. Watsonovi (2008), avšak rychle následovaly sekvenační analýzy dalších jedinců z různých etnik, které přinesly podstatné informace o interpersonálních rozdílech ve struktuře genomů (byly např. charakterizovány nukleotidové polymorfismy, delece a amplifikace úseků DNA). První významné aplikovatelné výsledky již přineslo sekvenování genomů nádorových buněk, např. akutní myeloidní leukémie. Ačkoli v současné době ještě nejsme schopni interpretovat význam všech detekovaných variant genomu, znamená možnost sekvenování individuálních lidských genomů zásadní zlom v DNA diagnostice i celé medicíně.
DNA sequencing has become a standard method widely used in molecular genetic analysis of biological materials. Its use in medicine is widespread, especially in diagnostics of inherited disorders and cancer related diseases. Development of DNA diagnostics has been strongly accelerated by publication of the human genome sequence in 2001. During the last few years one can observe rapid development of novel sequencing technologies, which have led to the introduction of so called „New Generation Sequencing“. These new technologies based on principles of massive parallel sequencing (e.g. Roche/454, Illumina Genome Analyzer IIx, Life Technologies SOLiD 3 and others) enable a massive increase of sequencing capacity and in parallel also a fundamental decrease of costs. This major technological breakthrough allowed development of the whole-genome sequencing including analyses of individual human genomes. It also started the era of personal genomics. The first sequenced individual human genomes belonged to famous geneticists J. C. Venter (2007) and J. D. Watson (2008), but they were rapidly followed by sequencing analyses of other individuals from various ethnic groups. These studies brought substantial information about interpersonal differences in genome structure (through characterization of nucleotide polymorphisms, DNA deletions and amplifications etc.). Sequencing of cancer cell genomes, e.g. acute myeloid leukemia has already brought first important clinically relevant results. Although currently we are still unable to interpret the relevance of all detected genome variants, it is obvious, that the possibility to sequence individual human genomes represents a fundamental breakthrough not only in DNA diagnostics but also in clinical medicine.