Characterization of Fruit Development, Antioxidant Capacity, and Potential Vasoprotective Action of Peumo (Cryptocarya alba), a Native Fruit of Chile

. 2021 Dec 15 ; 10 (12) : . [epub] 20211215

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34943100

Grantová podpora
064/2011 Fondo de Investigación del Bosque Nativo, CONAF
R17A10001 CREAS CONICYT-REGIONAL GORE Región de Valparaíso
program TREND No. FW03010400 Technology Agency of the Czech Republic

The peumo (Cryptocarya alba) is a native fruit from central Chile that belongs to the Lauraceae family. To characterize the development and the potential health benefits of this edible fruit, quality and physiological parameters, along with antioxidant capacity, were evaluated during three clearly defined developmental stages of the fruit in two seasons. The most distinguishable attributes of ripe fruit were the change in size and color. Low CO2 production and no detectable ethylene levels suggested non-climacteric behavior of the peumo fruit. Peumo demonstrate a significant increase in their antioxidant capacity per 1 g of fresh weight (FW) of the sample, from small to ripe fruit. Higher values in ripe fruit (FRAP: 37.1-38.3 µmol FeSO4/gFW, TEAC: 7.9-8.1 mmol TE/gFW, DPPH: 8.4-8.7 IC50 μg/mL, and ORAC: = 0.19-0.20 mmol TE/gFW) were observed than those in blueberry fruit (FRAP: 4.95 µmol FeSO4/gFW, TEAC: 1.25 mmol TE/gFW, DPPH: 11.3 IC50 μg/mL, and ORAC: 0.032 mmol TE/ gFW). The methanol extracts of ripe fruit displayed the presence of polyphenol acids and quercetin, an ORAC value of 0.637 ± 0.061 mmol TE per g dried weight (DW), and a high cellular antioxidant and anti-inflammatory potential, the latter exceeding the effect of quercetin and indomethacin used as standard molecules. Also, the assay of isolated rat aorta with endothelium-dependent relaxation damage demonstrated that the peumo extract induced vascular protection, depending on its concentration under a high glucose condition. These results demonstrate that these endemic fruits have a good chance as ingredients or foods with functional properties.

Zobrazit více v PubMed

Fuentes-Ramírez A., Pauchard A., Cavieres L.A., García R.A. Survival and growth of Acacia dealbata vs. native trees across an invasion front in south-central Chile. For. Ecol. Manag. 2011;261:1003–1009. doi: 10.1016/j.foreco.2010.12.018. DOI

Benedetti S. Información Tecnológica de Productos Forestales No Madereros del Bosque Nativo en Chile. CONAF; Santiago, Chile: 2012. [(accessed on 28 October 2021)]. Monografía de peumo Cryptocarya alba (Mol) Looser. Available online: https://investigacion.conaf.cl/archivos/repositorio_documento/2018/11/004_2011-DOCUMENTOS_MONOGRAFIA_PEUMO.pdf.

Cheeke P.R. Actual and Potential Applications of Yucca Schidigera and Quillaja Saponaria Saponins in Human and Animal Nutrition. In: Oleszek W., Marston A., editors. Saponins in Food, Feedstuffs and Medicinal Plants. Volume 45 Springer; Dordrecht, The Netherlands: 2000. (Proceedings of the Phythochemical Society of Europe book Series).

Fuentes-Barros G., Castro-Saavedra S., Liberona L., Acevedo-Fuentes W., Tirapegui C., Mattar C., Cassels B.K. Variation of the alkaloid content of Peumus boldus (boldo) Fitoterapia. 2018;127:179–185. doi: 10.1016/j.fitote.2018.02.020. PubMed DOI

Vogel H., Razmilic I., San Martín J., Doll U., y González B. Plantas Medicinales Chilenas. Experiencia de Domesticación y Cultivo de Boldo, Matico, Bailahuén, Canelo, Peumo y Maqui. 2nd ed. Editorial de la Universidad de Talca; Talca, Chile: 2008. 194p

Avello-Lorca M., López Canales C., GaticaValenzuela C., Bustos Concha E., Chait A.B., Pastene Navarrete C.E., Bittner Berner C.M. Antimicrobial effects of extracts from Chilean plants of Lauraceae and Atherospermataceae families. Rev. Cub. Plant. Med. 2012;17:73–83.

Schmeda-Hirschmann G., Astudillo L., Bastida J., Codina C., de Arias A.R., Ferreira M.E., Inchaustti A., Yaluff G. Cryptofolione derivatives from Cryptocarya alba fruits. J. Pharm. Pharmacol. 2010;53:563–567. doi: 10.1211/0022357011775686. PubMed DOI

Domínguez S.Y., Martínez E. Guía Didáctica. Ediciones Alfonso Martínez, S. L; Madrid, Spain: 1999. Árboles de nuestros bosques.

Simirgiotis M.J. Antioxidant Capacity and HPLC-DAD-MS Profiling of Chilean Peumo (Cryptocarya alba) Fruits and Comparison with German Peumo (Crataegus monogyna) from Southern Chile. Molecules. 2013;18:2061–2080. doi: 10.3390/molecules18022061. PubMed DOI PMC

Speisky H., López-Alarcón C., Gómez M., Fuentes J., Sandoval-Acuña C. First Web-Based Database on Total Phenolics and Oxygen Radical Absorbance Capacity (ORAC) of Fruits Produced and Consumed within the South Andes Region of South America. J. Agric. Food Chem. 2012;60:8851–8859. doi: 10.1021/jf205167k. PubMed DOI

Ruiz A., Hermosí;n-Gutiérrez I., Mardones C., Vergara C., Herlitz E., Vega M., Dorau C., Winterhalter P., Von Baer D. Polyphenols and Antioxidant Activity of Calafate (Berberis microphylla) Fruits and Other Native Berries from Southern Chile. J. Agric. Food Chem. 2010;58:6081–6089. doi: 10.1021/jf100173x. PubMed DOI

Fuentes L., Figueroa C.R., Valdenegro M., Vinet R. Patagonian Berries: Healthy Potential and the Path to Becoming Functional Foods. Foods. 2019;8:289. doi: 10.3390/foods8080289. PubMed DOI PMC

Céspedes C., El-Hafidi M., Pavon N., Alarcon J. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilenesis (Elaeocarpaceae) Maqui. Food Chem. 2008;108:820–829. doi: 10.1016/j.foodchem.2007.08.092. DOI

Miranda-Rottmann S., Aspillaga A.A., Pérez D.D., Vasquez L., Martinez A.A.L.F., Leighton F. Juice and Phenolic Fractions of the Berry Aristotelia chilensis Inhibit LDL Oxidation in Vitro and Protect Human Endothelial Cells against Oxidative Stress. J. Agric. Food Chem. 2002;50:7542–7547. doi: 10.1021/jf025797n. PubMed DOI

Schreckinger M.E., Wang J., Yousef G., Lila M.A., de Mejia E.G. Antioxidant Capacity and in Vitro Inhibition of Adipogenesis and Inflammation by Phenolic Extracts of Vaccinium floribundum and Aristotelia chilensis. J. Agric. Food Chem. 2010;58:8966–8976. doi: 10.1021/jf100975m. PubMed DOI

Paredes-López O., Cervantes-Ceja M.L., Vigna-Pérez M., Hernández-Pérez T. Berries: Improving human health and healthy aging, and promoting quality life A review. Plant Foods Hum. Nutr. 2010;65:299–308. doi: 10.1007/s11130-010-0177-1. PubMed DOI

AOAC (Association of Official Analytical Chemists) Official Methods of Analysis of AOAC International. 16th ed. Association of Official Analytical Chemists Inc.; Washington, DC, USA: 1997.

Benzie I.F.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Van den Berg R., Haenen G.R., van den Berg H., Bast A.A.L.T. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999;66:511–517. doi: 10.1016/S0308-8146(99)00089-8. DOI

Valdenegro M., Fuentes L., Herrera R., Moya-Leon M.A. Changes in antioxidant capacity during development and ripening of goldenberry (Physalis peruviana L.) fruit and in response to 1-methylcyclopropene treatment. Postharvest Biol. Technol. 2012;67:110–117. doi: 10.1016/j.postharvbio.2011.12.021. DOI

Murcia M., Jiménez-Monreal A., García-Diz L., Carmona M., Maggi L., Martínez-Tomé M. Antioxidant activity of minimally processed (in modified atmospheres), dehydrated and ready-to-eat vegetables. Food Chem. Toxicol. 2009;47:2103–2110. doi: 10.1016/j.fct.2009.05.039. PubMed DOI

Brand-Williams W., Cuvelier M.E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995;28:25–30. doi: 10.1016/S0023-6438(95)80008-5. DOI

Singleton V.L., Rossi J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16:144–158.

Galati E.M., Mondello M.R., Giuffrida D., Dugo G., Miceli N., Pergolizzi S., Taviano M.F. Chemical Characterization and Biological Effects of Sicilian Opuntia ficus indica (L.) Mill. Fruit Juice: Antioxidant and Antiulcerogenic Activity. J. Agric. Food Chem. 2003;51:4903–4908. doi: 10.1021/jf030123d. PubMed DOI

Chang C.-C., Yang M.-H., Wen H.-M., Chern J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002;10:178–182.

Fuentes L., Valdenegro M., Gómez M.-G., Ayala-Raso A., Quiroga E., Martinez J.P., Vinet R., Caballero E., Figueroa C. Characterization of fruit development and potential health benefits of arrayan (Luma apiculata), a native berry of South America. Food Chem. 2016;196:1239–1247. doi: 10.1016/j.foodchem.2015.10.003. PubMed DOI

Viktorová J., Kumar R., Řehořová K., Hoang L., Ruml T., Figueroa C.R., Valdenegro M., Fuentes L. Antimicrobial Activity of Extracts of Two Native Fruits of Chile: Arrayan (Luma apiculata) and Peumo (Cryptocarya alba) Antibiotics. 2020;9:444. doi: 10.3390/antibiotics9080444. PubMed DOI PMC

Viktorova J., Stranska-Zachariasova M., Fenclova M., Vitek L., Hajslova J., Kren V., Ruml T. Complex Evaluation of Antioxidant Capacity of Milk Thistle Dietary Supplements. Antioxidants. 2019;8:317. doi: 10.3390/antiox8080317. PubMed DOI PMC

Dobiasová S., Řehořová K., Kučerová D., Biedermann D., Káňová K., Petrásková L., Koucká K., Václavíková R., Valentová K., Ruml T., et al. Multidrug Resistance Modulation Activity of Silybin Derivatives and Their Anti-Inflammatory Potential. Antioxidants. 2020;9:455. doi: 10.3390/antiox9050455. PubMed DOI PMC

Guide for the Care and Use of Laboratory Animals. 8th ed. National Academies Press; Washington, DC, USA: 2011. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals.

Vinet R., Brieva C., Pinardi G., Penna M. Modulation of α-adrenergic-induced contractions by endothelium-derived relaxing factor in rat aorta. Gen. Pharmacol. Vasc. Syst. 1991;22:137–142. doi: 10.1016/0306-3623(91)90324-Y. PubMed DOI

Vinet R., Araos P., Gentina J.C., Knox M., Guzman L. p-Coumaric acid reduces high glucose-mediated impairment of endothelium-dependent relaxation in rat aorta. BLACPMA. 2014;13:232–237.

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2010.

Xu J., Zhao Y., Zhang X., Zhang L., Hou Y., Dong W. Transcriptome Analysis and Ultrastructure Observation Reveal that Hawthorn Fruit Softening Is due to Cellulose/Hemicellulose Degradation. Front. Plant Sci. 2016;7:1524. doi: 10.3389/fpls.2016.01524. PubMed DOI PMC

U.S FDA and the Center for Food Safety and Applied Nutrition. [(accessed on 28 October 2021)]. Available online: http://www.foodscience.caes.uga.edu/extension/documents/fdaapproximatephoffoodslacf-phs.pdf.

Maxie E.C., Catlin P.B., Hartman H.T. Respiration and ripening of olive fruits. Proc. Am. Soc. Hortic. Sci. 1960;75:275–291.

Kafkaletou M., Fasseas C., Tsantili E. Increased firmness and modified cell wall composition by ethylene were reversed by the ethylene inhibitor 1-methylcyclopropene (1-MCP) in the non-climacteric olives harvested at dark green stage—Possible implementation of ethylene for olive quality. J. Plant Physiol. 2019;238:63–71. doi: 10.1016/j.jplph.2019.05.006. PubMed DOI

Sáez F.A., Aguayo M.G., Mendonça R.T., Fuentes L., Figueroa C.R. Changes of cell wall-associated polysaccharides and sugars during development and ripening of arrayan (Luma apiculata) and lleuque (Prumnopitys andina) fruits. Acta Physiol. Plant. 2022;44:9. doi: 10.1007/s11738-021-03344-9. DOI

Zheng Y.-Z., Deng G., Liang Q., Chen D.-F., Guo R., Lai R.-C. Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study. Sci. Rep. 2017;7:7543. doi: 10.1038/s41598-017-08024-8. PubMed DOI PMC

Dabeek W.M., Marra M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients. 2019;11:2288. doi: 10.3390/nu11102288. PubMed DOI PMC

Xiao J. Dietary Flavonoid Aglycones and Their Glycosides: Which Show Better Biological Significance? Crit. Rev. Food Sci. Nutr. 2015;57:1874–1905. doi: 10.1080/10408398.2015.1032400. PubMed DOI

Timmermann B.N., Valcic S., Liu Y.-L., Montenegro G. Notes: Flavonols from Cryptocarya alba. Z. Nat. C. 1995;50:898–899. doi: 10.1515/znc-1995-11-1223. DOI

Kim H.-Y., Nam S.-Y., Hong S.-W., Kim M.J., Jeong H.-J., Kim H.-M. Protective Effects of Rutin through Regulation of Vascular Endothelial Growth Factor in Allergic Rhinitis. Am. J. Rhinol. Allergy. 2015;29:e87–e94. doi: 10.2500/ajra.2015.29.4195. PubMed DOI

Chen W.-Y., Huang Y.-C., Yang M.-L., Lee C.-Y., Chen C.-J., Yeh C.-H., Pan P.-H., Horng C.-T., Kuo W.-H., Kuan Y.-H. Protective effect of rutin on LPS-induced acute lung injury via down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation. Int. Immunopharmacol. 2014;22:409–413. doi: 10.1016/j.intimp.2014.07.026. PubMed DOI

Wang Y.P., Wat E., Koon C.M., Wong C.W., Cheung D.W.S., Leung P.C., Zhao Q.S., Fung K.P., Lau C.B.S. The beneficial potential of polyphenol-enriched fraction from Erigerontis Herba on metabolic syndrome. J. Ethnopharmacol. 2016;187:94–103. doi: 10.1016/j.jep.2016.04.040. PubMed DOI

Bujor A., Miron A., Luca S.V., Skalicka-Wozniak K., Silion M., Trifan A., Girard C., Demougeot C., Totoson P. Vasorelaxant effects of Crataegus pentagyna: Links with arginase inhibition and phenolic profile. J. Ethnopharmacol. 2020;252:112559. doi: 10.1016/j.jep.2020.112559. PubMed DOI

Peyrol J., Meyer G., Obert P., Dangles O., Pechère L., Amiot M.-J., Riva C. Involvement of bilitranslocase and beta-glucuronidase in the vascular protection by hydroxytyrosol and its glucuronide metabolites in oxidative stress conditions. J. Nutr. Biochem. 2018;51:8–15. doi: 10.1016/j.jnutbio.2017.09.009. PubMed DOI

Carullo G., Ahmed A., Fusi F., Sciubba F., Di Cocco M.E., Restuccia D., Spizzirri U.G., Saponara S., Aiello F. Vasorelaxant Effects Induced by Red Wine and Pomace Extracts of Magliocco Dolce cv. Pharmaceutics. 2020;13:87. doi: 10.3390/ph13050087. PubMed DOI PMC

Chen X., Hu T., Han Y., Huang W., Yuan H., Zhang Y.-T., Du Y., Jiang Y.-W. Preventive Effects of Catechins on Cardiovascular Disease. Molecules. 2016;21:1759. doi: 10.3390/molecules21121759. PubMed DOI PMC

Mangels D.R., Mohler E.R. Catechins as Potential Mediators of Cardiovascular Health. Arterioscler. Thromb. Vasc. Biol. 2017;37:757–763. doi: 10.1161/ATVBAHA.117.309048. PubMed DOI

Murray M., Walchuk C., Suh M., Jones P.J. Green tea catechins and cardiovascular disease risk factors: Should a health claim be made by the United States Food and Drug Administration? Trends Food Sci. Technol. 2015;41:188–197. doi: 10.1016/j.tifs.2014.10.004. DOI

Naveed M., Hejazi V., Abbas M., Kamboh A.A., Khan G.J., Shumzaid M., Ahmad F., Babazadeh D., FangFang X., Modarresi-Ghazani F., et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018;97:67–74. doi: 10.1016/j.biopha.2017.10.064. PubMed DOI

Li L., Su C., Chen X., Wang Q., Jiao W., Luo H., Tang J., Wang W., Li S., Guo S. Chlorogenic Acids in Cardiovascular Disease: A Review of Dietary Consumption, Pharmacology, and Pharmacokinetics. J. Agric. Food Chem. 2020;68:6464–6484. doi: 10.1021/acs.jafc.0c01554. PubMed DOI

Miao M., Xiang L. Pharmacological action and potential targets of chlorogenic acid. Adv. Pharmacol. 2020;87:71–88. doi: 10.1016/bs.apha.2019.12.002. PubMed DOI

Rodríguez K., Ah-Hen K., Vega-Galvez A., López J., Quispe-Fuentes I., Lemus-Mondaca R., Galvez-Ranilla L. Changes in bioactive compounds and antioxidant activity during convective drying of murta (Ugni molinae T.) berries. Int. J. Food Sci. Technol. 2013;49:990–1000. doi: 10.1111/ijfs.12392. DOI

Puente-Díaz L., Ah-Hen K., Vega-Gálvez A., Lemus-Mondaca R., Di Scala K. Combined infrared-convective drying of murta (Ugni molinae Turcz.) berries: Kinetic modeling and quality assessment. Dry Technol. 2013;31:329–338. doi: 10.1080/07373937.2012.736113. DOI

Castellon X., Bogdanova V. Chronic Inflammatory Diseases and Endothelial Dysfunction. Aging Dis. 2016;7:81–89. doi: 10.14336/AD.2015.0803. PubMed DOI PMC

Xu D., Hu M.-J., Wang Y.-Q., Cui Y.-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules. 2019;24:1123. doi: 10.3390/molecules24061123. PubMed DOI PMC

Lesjak M., Beara I., Simin N., Pintać D., Majkić T., Bekvalac K., Orčić D., Mimica-Dukić N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods. 2018;40:68–75. doi: 10.1016/j.jff.2017.10.047. DOI

Zeng Y., Song J., Zhang M., Wang H., Zhang Y., Suo H. Comparison of In Vitro and In Vivo Antioxidant Activities of Six Flavonoids with Similar Structures. Antioxidants. 2020;9:732. doi: 10.3390/antiox9080732. PubMed DOI PMC

Rauf A., Imran M., Abu-Izneid T., Iahtisham-Ul-Haq, Patel S., Pan X., Naz S., Silva A.S., Saeed F., Suleria H.A.R. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019;116:108999. doi: 10.1016/j.biopha.2019.108999. PubMed DOI

Aziz N., Kim M.-Y., Cho J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018;225:342–358. doi: 10.1016/j.jep.2018.05.019. PubMed DOI

Nakanishi T., Mukai K., Yumoto H., Hirao K., Hosokawa Y., Matsuo T. Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria-derived factors. Eur. J. Oral Sci. 2010;118:145–150. doi: 10.1111/j.1600-0722.2010.00714.x. PubMed DOI

Davignon J., Ganz P. Role of Endothelial Dysfunction in Atherosclerosis. Circulation. 2004;109((Suppl. S23)):III-27–III-32. doi: 10.1161/01.CIR.0000131515.03336.f8. PubMed DOI

Knox M., Vinet R., Fuentes L., Morales B., Martínez J.L. A Review of Endothelium-Dependent and -Independent Vasodilation Induced by Phytochemicals in Isolated Rat Aorta. Animals. 2019;9:623. doi: 10.3390/ani9090623. PubMed DOI PMC

Chan E.C.H., Pannangpetch P., Woodman O. Relaxation to Flavones and Flavonols in Rat Isolated Thoracic Aorta: Mechanism of Action and Structure-Activity Relationships. J. Cardiovasc. Pharmacol. 2000;35:326–333. doi: 10.1097/00005344-200002000-00023. PubMed DOI

Jofré I., Pezoa C., Cuevas M., Scheuermann E., Freires I.A., Rosalen P.L., de Alencar S.M., Romero F. Antioxidant and Vasodilator Activity of Ugni molinae Turcz. (Murtilla) and Its Modulatory Mechanism in Hypotensive Response. Oxidative Med. Cell. Longev. 2016;2016:6513416. doi: 10.1155/2016/6513416. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace