Dehydrosilybin attenuates the production of ROS in rat cardiomyocyte mitochondria with an uncoupler-like mechanism

. 2010 Dec ; 42 (6) : 499-509. [epub] 20101214

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21153691

Reactive oxygen species (ROS) originating from mitochondria are perceived as a factor contributing to cell aging and means have been sought to attenuate ROS formation with the aim of extending the cell lifespan. Silybin and dehydrosilybin, two polyphenolic compounds, display a plethora of biological effects generally ascribed to their known antioxidant capacity. When investigating the cytoprotective effects of these two compounds in the primary cell cultures of neonatal rat cardiomyocytes, we noted the ability of dehydrosilybin to de-energize the cells by monitoring JC-1 fluorescence. Experiments evaluating oxygen consumption and membrane potential revealed that dehydrosilybin uncouples the respiration of isolated rat heart mitochondria albeit with a much lower potency than synthetic uncouplers. Furthermore, dehydrosilybin revealed a very high potency in suppressing ROS formation in isolated rat heart mitochondria with IC(50) = 0.15 μM. It is far more effective than its effect in a purely chemical system generating superoxide or in cells capable of oxidative burst, where the IC(50) for dehydrosilybin exceeds 50 μM. Dehydrosilybin also attenuated ROS formation caused by rotenone in the primary cultures of neonatal rat cardiomyocytes. We infer that the apparent uncoupler-like activity of dehydrosilybin is the basis of its ROS modulation effect in neonatal rat cardiomyocytes and leads us to propose a hypothesis on natural ischemia preconditioning by dietary polyphenols.

Zobrazit více v PubMed

Biochem Biophys Res Commun. 1981 May 15;100(1):37-44 PubMed

J Bioenerg Biomembr. 1999 Oct;31(5):431-45 PubMed

J Phys Chem A. 2008 Feb 7;112(5):1054-63 PubMed

Cardiovasc Res. 2006 Nov 1;72(2):313-21 PubMed

Bioorg Med Chem. 2004 Nov 1;12(21):5677-87 PubMed

J Biol Chem. 1996 Feb 2;271(5):2615-20 PubMed

Am J Physiol Regul Integr Comp Physiol. 2006 Sep;291(3):R491-511 PubMed

Phytother Res. 2008 Sep;22(9):1213-8 PubMed

J Bioenerg Biomembr. 2009 Apr;41(2):133-6 PubMed

J Biol Chem. 2002 Dec 20;277(51):49965-75 PubMed

J Bioenerg Biomembr. 2009 Feb;41(1):41-7 PubMed

Hepatology. 2010 Jun;51(6):1912-21 PubMed

Free Radic Biol Med. 2009 Aug 15;47(4):333-43 PubMed

J Pharmacol Exp Ther. 2006 Jan;316(1):200-7 PubMed

Methods Enzymol. 1990;186:209-20 PubMed

Annu Rev Biochem. 2006;75:69-92 PubMed

Biophys J. 1999 Jan;76(1 Pt 1):469-77 PubMed

FEBS Lett. 1997 Jul 7;411(1):77-82 PubMed

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2001 Dec;145(2):49-55 PubMed

Anal Biochem. 1997 Nov 15;253(2):162-8 PubMed

Anal Biochem. 1976 May 7;72:248-54 PubMed

Int J Biochem Cell Biol. 2005 Dec;37(12):2478-503 PubMed

Int J Biochem Cell Biol. 2007;39(1):44-84 PubMed

J Biol Chem. 1999 Sep 10;274(37):26003-7 PubMed

Cardiovasc Res. 2006 Nov 1;72(2):322-30 PubMed

Chem Biol Interact. 2005 Apr 15;152(2-3):67-78 PubMed

Int J Biochem Cell Biol. 2008;40(10):2098-109 PubMed

Free Radic Biol Med. 2000 May 15;28(10):1456-62 PubMed

J Mol Cell Cardiol. 2009 Jun;46(6):858-66 PubMed

Curr Med Chem. 2007;14(3):315-38 PubMed

Am J Physiol Cell Physiol. 2007 Jan;292(1):C137-47 PubMed

Biosci Rep. 2006 Jun;26(3):231-43 PubMed

Free Radic Biol Med. 2009 Mar 15;46(6):745-58 PubMed

Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5995-9 PubMed

Biochim Biophys Acta. 1998 Feb 25;1363(2):100-24 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...