Silymarin Constituent 2,3-Dehydrosilybin Triggers Reserpine-Sensitive Positive Inotropic Effect in Perfused Rat Heart

. 2015 ; 10 (9) : e0139208. [epub] 20150929

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26418338

2,3-dehydrosilybin (DHS) is a minor flavonolignan component of Silybum marianum seed extract known for its hepatoprotective activity. Recently we identified DHS as a potentially cardioprotective substance during hypoxia/reoxygenation in isolated neonatal rat cardiomyocytes. This is the first report of positive inotropic effect of DHS on perfused adult rat heart. When applied to perfused adult rat heart, DHS caused a dose-dependent inotropic effect resembling that of catecholamines. The effect was apparent with DHS concentration as low as 10 nM. Suspecting direct interaction with β-adrenergic receptors, we tested whether DHS can trigger β agonist-dependent gene transcription in a model cell line. While DHS alone was unable to trigger β agonist-dependent gene transcription, it enhanced the effect of isoproterenol, a known unspecific β agonist. Further tests confirmed that DHS could not induce cAMP accumulation in isolated neonatal rat cardiomyocytes even though high concentrations (≥ 10 μM) of DHS were capable of decreasing phosphodiesterase activity. Pre-treatment of rats with reserpine, an indole alkaloid which depletes catecholamines from peripheral sympathetic nerve endings, abolished the DHS inotropic effect in perfused hearts. Our data suggest that DHS causes the inotropic effect without acting as a β agonist. Hence we identify DHS as a novel inotropic agent.

Zobrazit více v PubMed

Rambaldi A, Jacobs BP, Iaquinto G, Gluud C. Milk thistle for alcoholic and/or hepatitis B or C liver diseases—a systematic cochrane hepato-biliary group review with meta-analyses of randomized clinical trials. Am J Gastroenterol. 2005; 100: 2583–2591. 10.1111/j.1572-0241.2005.00262.x PubMed DOI

Comelli MC, Mengs U, Schneider C, Prosdocimi M. Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy. Integr Cancer Ther. 2007; 6: 120–129. 10.1177/1534735407302349 PubMed DOI

Rao PR, Viswanath RK. Cardioprotective activity of silymarin in ischemia-reperfusion-induced myocardial infarction in albino rats. Exp Clin Cardiol. 2007; 12: 179–187. PubMed PMC

Nabavi SM, Nabavi SF, Moghaddam AH, Setzer WN, Mirzaei M. Effect of silymarin on sodium fluoride-induced toxicity and oxidative stress in rat cardiac tissues. An Acad Bras Cienc. 2012; 84: 1121–1126. PubMed

Zholobenko A, Modriansky M. Silymarin and its constituents in cardiac preconditioning. Fitoterapia. 2014; 97: 122–132. 10.1016/j.fitote.2014.05.016 PubMed DOI

Chlopcikova S, Psotova J, Miketova P, Simanek V. Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Part I. Silymarin and its flavonolignans. Phytother Res. 2004; 18: 107–110. 10.1002/ptr.1415 PubMed DOI

Taghiabadi E, Imenshahidi M, Abnous K, Mosafa F, Sankian M, Memar B, et al. Protective Effect of Silymarin against Acrolein-Induced Cardiotoxicity in Mice. Evid Based Complement Alternat Med. 2012; 2012: 352091 10.1155/2012/352091 PubMed DOI PMC

Raskovic A, Stilinovic N, Kolarovic J, Vasovic V, Vukmirovic S, Mikov M. The protective effects of silymarin against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats. Molecules. 2011; 16: 8601–8613. 10.3390/molecules16108601 PubMed DOI PMC

El-Awady el-SE, Moustafa YM, Abo-Elmatty DM, Radwan A. Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. Eur J Pharmacol. 2011; 650: 335–341. 10.1016/j.ejphar.2010.09.085 PubMed DOI

El-Shitany NA, El-Haggar S, El-desoky K. Silymarin prevents adriamycin-induced cardiotoxicity and nephrotoxicity in rats. Food Chem Toxicol. 2008; 46: 2422–2428. 10.1016/j.fct.2008.03.033 PubMed DOI

Gabrielova E, Jaburek M, Gazak R, Vostalova J, Jezek J, Kren V, et al. Dehydrosilybin attenuates the production of ROS in rat cardiomyocyte mitochondria with an uncoupler-like mechanism. J Bioenerg Biomembr. 2010; 42: 499–509. 10.1007/s10863-010-9319-2 PubMed DOI

Gabrielova E, Kren V, Jaburek M, Modriansky M. Silymarin component 2,3-dehydrosilybin attenuates cardiomyocyte damage following hypoxia/reoxygenation by limiting oxidative stress. Physiol Res. 2015; 64: 79–91. PubMed

Garlid KD, Costa AD, Quinlan CL, Pierre SV, Dos Santos P. Cardioprotective signaling to mitochondria. J Mol Cell Cardiol. 2009; 46: 858–866. PubMed PMC

Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009; 54: 1747–1762. PubMed

Gazak R, Trouillas P, Biedermann D, Fuksova K, Marhol P, Kuzma M, et al. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron Letters. 2013; 54: 315–317. 10.1016/j.tetlet.2012.11.049 DOI

Bartosikova L, Necas J, Bartosik T, Frana P, Pavlik M. Changes in biomechanical parameters during heart perfusion and after midazolam pre-medication—experimental pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2008; 152: 79–82. PubMed

Kozlovski VI, Vdovichenko VP, Chlopicki S, Malchik SS, Praliyev KD, Zcilkibayev OT. Antiarrhythmic profile and endothelial action of novel decahydroquinoline derivatives. Pol J Pharmacol. 2004; 56: 767–774. PubMed

Chlopcikova S, Psotova J, Miketova P. Neonatal rat cardiomyocytes—a model for the study of morphological, biochemical and electrophysiological characteristics of the heart. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2001; 145: 49–55. PubMed

Valentine CD, Haggie PM. Confinement of beta(1)- and beta(2)-adrenergic receptors in the plasma membrane of cardiomyocyte-like H9c2 cells is mediated by selective interactions with PDZ domain and A-kinase anchoring proteins but not caveolae. Mol Biol Cell. 2011; 22: 2970–2982. 10.1091/mbc.E11-01-0034 PubMed DOI PMC

Slim HB, Black HR, Thompson PD. Older blood pressure medications-do they still have a place? Am J Cardiol. 2011; 108: 308–316. 10.1016/j.amjcard.2011.03.041 PubMed DOI

Bors W, Michel C. Chemistry of the antioxidant effect of polyphenols. Ann N Y Acad Sci. 2002; 957: 57–69. PubMed

Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med. 2004; 36: 838–849. 10.1016/j.freeradbiomed.2004.01.001 PubMed DOI

Fraga CG, Galleano M, Verstraeten SV, Oteiza PI. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Aspects Med. 2010; 31: 435–445. 10.1016/j.mam.2010.09.006 PubMed DOI

Hou DX, Kumamoto T. Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antioxid Redox Signal. 2010; 13: 691–719. 10.1089/ars.2009.2816 PubMed DOI

Tang XL, Liu JX, Dong W, Li P, Li L, Lin CR, et al. Cardioprotective effect of protocatechuic acid on myocardial ischemia/reperfusion injury. J Pharmacol Sci. 2014; 125: 176–183. PubMed

Friel DD, Tsien RW. An FCCP-sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus-evoked changes in [Ca2+]i. J Neurosci. 1994; 14: 4007–4024. PubMed PMC

Li J, Shuai HY, Gylfe E, Tengholm A. Oscillations of sub-membrane ATP in glucose-stimulated beta cells depend on negative feedback from Ca(2+). Diabetologia. 2013; 56: 1577–1586. 10.1007/s00125-013-2894-0 PubMed DOI PMC

Frances C, Nazeyrollas P, Prevost A, Moreau F, Pisani J, Davani S, et al. Role of beta 1- and beta 2-adrenoceptor subtypes in preconditioning against myocardial dysfunction after ischemia and reperfusion. J Cardiovasc Pharmacol. 2003; 41: 396–405. PubMed

Zatta AJ, Kin H, Lee G, Wang N, Jiang R, Lust R, et al. Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signalling. Cardiovasc Res. 2006; 70: 315–324. 10.1016/j.cardiores.2005.11.030 PubMed DOI

Philipp S, Yang XM, Cui L, Davis AM, Downey JM, Cohen MV. Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res. 2006; 70: 308–314. 10.1016/j.cardiores.2006.02.014 PubMed DOI

Zhou JJ, Bian JS, Pei JM, Wu S, Li HY, Wong TM. Role of protein kinase C-epsilon in the development of kappa-opioid receptor tolerance to U50,488H in rat ventricular myocytes. Br J Pharmacol. 2002; 135: 1675–1684. 10.1038/sj.bjp.0704640 PubMed DOI PMC

Xu TR, He G, Dobson K, England K, Rumsby M. Phosphorylation at Ser729 specifies a Golgi localisation for protein kinase C epsilon (PKCepsilon) in 3T3 fibroblasts. Cell Signal. 2007; 19: 1986–1995. 10.1016/j.cellsig.2007.05.009 PubMed DOI

Brennan JP, Berry RG, Baghai M, Duchen MR, Shattock MJ. FCCP is cardioprotective at concentrations that cause mitochondrial oxidation without detectable depolarisation. Cardiovasc Res. 2006; 72: 322–330. S0008-6363(06)00381-6 [pii] 10.1016/j.cardiores.2006.08.006 PubMed DOI

Brennan JP, Southworth R, Medina RA, Davidson SM, Duchen MR, Shattock MJ. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res. 2006; 72: 313–321. S0008-6363(06)00346-4 [pii] 10.1016/j.cardiores.2006.07.019 PubMed DOI

Abete P, Cacciatore F, Testa G, Della-Morte D, Galizia G, de Santis D, et al. Ischemic preconditioning in the aging heart: from bench to bedside. Ageing Res Rev. 2010; 9: 153–162. 10.1016/j.arr.2009.07.001 PubMed DOI

Gazak R, Valentova K, Fuksova K, Marhol P, Kuzma M, Medina MA, et al. Synthesis and antiangiogenic activity of new silybin galloyl esters. J Med Chem. 2011; 54: 7397–7407. 10.1021/jm201034h PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...