A Closed Circulation Langendorff Heart Perfusion Method for Cardiac Drug Screening
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
39903886
PubMed Central
PMC11835219
DOI
10.33549/physiolres.935324
PII: 935324
Knihovny.cz E-zdroje
- MeSH
- krysa rodu Rattus MeSH
- perfuze * MeSH
- preklinické hodnocení léčiv * metody MeSH
- preparace izolovaného srdce * MeSH
- srdce účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cardiovascular diseases represent an economic burden for health systems accounting for substantial morbidity and mortality worldwide. Despite timely and costly efforts in drug development, the cardiovascular safety and efficacy of the drugs are not always fully achieved. These lead to the drugs' withdrawal with adverse cardiac effects from the market or in the late stages of drug development. There is a growing need for a cost-effective drug screening assay to rapidly detect potential acute drug cardiotoxicity. The Langendorff isolated heart perfusion technique, which provides cardiac hemodynamic parameters (e.g., contractile function and heart rate), has become a powerful approach in the early drug discovery phase to overcome drawbacks in the drug candidate's identification. However, traditional ex vivo retrograde heart perfusion methods consume a large volume of perfusate, which increases the cost and limits compound screening. An elegant and cost-effective alternative mode for ex vivo retrograde heart perfusion is the constant-flow with a recirculating circuit (CFCC), which allows assessment of cardiac function using a reduced perfusion volume while limiting adverse effects on the heart. Here, we provide evidence for cardiac parameters stability over time in this mode. Next, we demonstrate that our recycled ex vivo perfusion system and the traditional open one yield similar outputs on cardiac function under basal conditions and upon ?-adrenergic stimulation with isoproterenol. Subsequently, we validate the proof of concept of therapeutic agent screening using this efficient method. ?-blocker (i.e., propranolol) infusion in closed circulation countered the positive effects induced by isoproterenol stimulation on cardiac function. Keywords: Drug development, Drug screening, Cardiovascular safety, Langendorff method, Closed circulation.
Zobrazit více v PubMed
Onakpoya IJ, Heneghan CJ, Aronson JK. Worldwide withdrawal of medicinal products because of adverse drug reactions: a systematic review and analysis. Crit Rev Toxicol. 2016;46:477–489. doi: 10.3109/10408444.2016.1149452. PubMed DOI
Sloan JA, Goldberg RM, Sargent DJ, Vargas-Chanes D, Nair S, Cha SS, Novotny PJ, Poon MA, O’Connell MJ, Loprinzi CL. Women experience greater toxicity with fluorouracil-based chemotherapy for colorectal cancer. J Clin Oncol. 2002;20:1491–1498. doi: 10.1200/JCO.2002.20.6.1491. PubMed DOI
DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ. 2016;47:20–33. doi: 10.1016/j.jhealeco.2016.01.012. PubMed DOI
Ferri N, Siegl P, Corsini A, Herrmann J, Lerman A, Benghozi R. Drug attrition during pre-clinical and clinical development: understanding and managing drug-induced cardiotoxicity. Pharmacol Ther. 2013;138:470–484. doi: 10.1016/j.pharmthera.2013.03.005. PubMed DOI
McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem Pharmacol. 2014;87:162–171. doi: 10.1016/j.bcp.2013.08.006. PubMed DOI
Darpo B, Nebout T, Sager PT. Clinical evaluation of QT/QTc prolongation and proarrhythmic potential for nonantiarrhythmic drugs: the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use E14 guideline. J Clin Pharmacol. 2006;46:498–507. doi: 10.1177/0091270006286436. PubMed DOI
Mamoshina P, Rodriguez B, Bueno-Orovio A. Toward a broader view of mechanisms of drug cardiotoxicity. Cell Rep Med. 2021;2:100216. doi: 10.1016/j.xcrm.2021.100216. PubMed DOI PMC
Olejnickova V, Novakova M, Provaznik I. Isolated heart models: cardiovascular system studies and technological advances. Med Biol Eng Comput. 2015;53:669–678. doi: 10.1007/s11517-015-1270-2. PubMed DOI
Sutherland FJ, Hearse DJ. The isolated blood and perfusion fluid perfused heart. Pharmacol Res. 2000;41:613–627. doi: 10.1006/phrs.1999.0653. PubMed DOI
Curtis MJ. Characterisation, utilisation and clinical relevance of isolated perfused heart models of ischaemia-induced ventricular fibrillation. Cardiovasc Res. 1998;39:194–215. doi: 10.1016/S0008-6363(98)00083-2. PubMed DOI
Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol. 2011;50:940–950. doi: 10.1016/j.yjmcc.2011.02.018. PubMed DOI
Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R. Isolated heart perfusion according to Langendorff — still viable in the new millennium. J Pharmacol Toxicol Methods. 2007;55:113–126. doi: 10.1016/j.vascn.2006.05.006. PubMed DOI
Döring HJ. The isolated perfused heart according to Langendorff technique-function-application. Physiol Bohemoslov. 1990;39:481–504. PubMed
Sill B, Hammer PE, Cowan DB. Optical mapping of Langendorff-perfused rat hearts. J Vis Exp. 2009;30:e1138. doi: 10.3791/1138-v. PubMed DOI PMC
Anderson PG, Digerness SB, Sklar JL, Boor PJ. Use of the isolated perfused heart for evaluation of cardiac toxicity. Toxicol Pathol. 1990;18:497–510. doi: 10.1177/0192623390004Part_108. PubMed DOI
Sears CE, Choate JK, Paterson DJ. Effect of nitric oxide synthase inhibition on the sympatho-vagal contol of heart rate. J Auton Nerv Syst. 1998;73:63–73. doi: 10.1016/S0165-1838(98)00123-4. PubMed DOI
Altug S, Demiryürek AT, Kane KA, Kanzik I. Evidence for the involvement of peroxynitrite in ischaemic preconditioning in rat isolated hearts. Br J Pharmacol. 2000;130:125–131. doi: 10.1038/sj.bjp.0703280. PubMed DOI PMC
Curtis MJ, Macleod BA, Tabrizchi R, Walker MJ. An improved perfusion apparatus for small animal hearts. J Pharmacol Methods. 1986;15:87–94. doi: 10.1016/0160-5402(86)90008-2. PubMed DOI
Liao R, Podesser BK, Lim CC. The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping. Am J Physiol Heart Circ Physiol. 2012;303:H156–167. doi: 10.1152/ajpheart.00333.2012. PubMed DOI PMC
Salem R, Denault AY, Couture P, Bélisle S, Fortier A, Guertin MC, Carrier M, Martineau R. Left ventricular end-diastolic pressure is a predictor of mortality in cardiac surgery independently of left ventricular ejection fraction. Br J Anaesth. 2006;97:292–297. doi: 10.1093/bja/ael140. PubMed DOI
Gobel FL, Norstrom LA, Nelson RR, Jorgensen CR, Wang Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation. 1978;57:549–556. doi: 10.1161/01.CIR.57.3.549. PubMed DOI
Qiu Y, Hearse DJ. Comparison of ischemic vulnerability and responsiveness to cardioplegic protection in crystalloid-perfused versus blood-perfused hearts. J Thorac Cardiovasc Surg. 1992;103:960–968. doi: 10.1016/S0022-5223(19)34921-9. PubMed DOI
Plumb DC. Plumb’s Veterinary Drug Handbook. Stockholm, Wis. : Ames, Iowa: PhrmaVet ; Distributed by Blackwell Pub; 2005.
Kawasaki NK, Suhara T, Komai K, Shimada BK, Yorichika N, Kobayashi M, Baba Y, Higa JK, Matsui T. The role of ferroptosis in cell-to-cell propagation of cell death initiated from focal injury in cardiomyocytes. Life Sci. 2023;332:122113. doi: 10.1016/j.lfs.2023.122113. PubMed DOI PMC
Yasmin W, Strynadka KD, Schulz R. Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res. 1997;33:422–432. doi: 10.1016/S0008-6363(96)00254-4. PubMed DOI
Suzuki K, Murtuza B, Fukushima S, Smolenski RT, Varela-Carver A, Coppen SR, Yacoub MH. Targeted cell delivery into infarcted rat hearts by retrograde intracoronary infusion: distribution, dynamics, and influence on cardiac function. Circulation. 2004;110:Ii225–230. doi: 10.1161/01.CIR.0000138191.11580.e3. PubMed DOI
Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today. 2013;18:240–249. doi: 10.1016/j.drudis.2012.10.003. PubMed DOI
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D Cell culture systems: tumor application, advantages, and disadvantages. Int J Mol Sci. 2021:22. doi: 10.3390/ijms222212200. PubMed DOI PMC
Xuan W, Tipparaju SM, Ashraf M. Transformational applications of human cardiac organoids in cardiovascular diseases. Front Cell Dev Biol. 2022;10:936084. doi: 10.3389/fcell.2022.936084. PubMed DOI PMC
Querdel E, Reinsch M, Castro L, Köse D, Bähr A, Reich S, Geertz B, Ulmer B, Schulze M, Lemoine MD, Krause T, Lemme M, Sani J, Shibamiya A, Stüdemann T, Köhne M, Bibra CV, Hornaschewitz N, Pecha S, Nejahsie Y, Mannhardt I, Christ T, Reichenspurner H, Hansen A, Klymiuk N, Krane M, Kupatt C, Eschenhagen T, Weinberger F. Human engineered heart tissue patches remuscularize the injured heart in a dose-dependent manner. Circulation. 2021;143:1991–2006. doi: 10.1161/CIRCULATIONAHA.120.047904. PubMed DOI PMC
Gabrielová E, Zholobenko AV, Bartošíková L, Nečas J, Modriansky M. Silymarin Constituent 2,3-Dehydrosilybin Triggers Reserpine-Sensitive Positive Inotropic Effect in Perfused Rat Heart. PLoS One. 2015;10:e0139208. doi: 10.1371/journal.pone.0139208. PubMed DOI PMC
Jacob R, Khan M. Cardiac Biomarkers: What Is and What Can Be. Indian J Cardiovasc Dis Women WINCARS. 2018;3:240–244. doi: 10.1055/s-0039-1679104. PubMed DOI PMC
Ronca-Testoni S, Borghini F. Degradation of perfused adenine compounds up to uric acid in isolated rat heart. J Mol Cell Cardiol. 1982;14:177–180. doi: 10.1016/0022-2828(82)90116-X. PubMed DOI
Bricknell OL, Opie LH. Effects of substrates on tissue metabolic changes in the isolated rat heart during underperfusion and on release of lactate dehydrogenase and arrhythmias during reperfusion. Circ Res. 1978;43:102–115. doi: 10.1161/01.RES.43.1.102. PubMed DOI
Bachmann E, Weber E. Recirculating, retrograde heart perfusion according to Langendorff as a tool in the evaluation of drug-induced cardiomyopathy: effects of a high lipid diet. Arch Toxicol. 1991;65:474–479. doi: 10.1007/BF01977359. PubMed DOI
Kappler B, Ledezma CA, van Tuijl S, Meijborg V, Boukens BJ, Ergin B, Tan PJ, Stijnen M, Ince C, Díaz-Zuccarini V, de Mol B. Investigating the physiology of normothermic ex vivo heart perfusion in an isolated slaughterhouse porcine model used for device testing and training. BMC Cardiovasc Disord. 2019;19:254. doi: 10.1186/s12872-019-1242-9. PubMed DOI PMC
Sutherland FJ, Shattock MJ, Baker KE, Hearse DJ. Mouse isolated perfused heart: characteristics and cautions. Clin Exp Pharmacol Physiol. 2003;30:867–878. doi: 10.1046/j.1440-1681.2003.03925.x. PubMed DOI
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–1136. doi: 10.1161/01.CIR.74.5.1124. PubMed DOI
Kadipasaoglu KA, Bennink GW, Conger JL, Birovljev S, Sartori M, Clubb FJ, Jr, Noda H, Ferguson JJ, Frazier OH. An ex vivo model for the reperfusion of explanted human hearts. Tex Heart Inst J. 1993;20:33–39. PubMed PMC
Motayagheni N. Modified Langendorff technique for mouse heart cannulation: Improved heart quality and decreased risk of ischemia. MethodsX. 2017;4:508–512. doi: 10.1016/j.mex.2017.11.004. PubMed DOI PMC
Mamoshina P, Bueno-Orovio A, Rodriguez B. Dual transcriptomic and molecular machine learning predicts all major clinical forms of drug cardiotoxicity. Front Pharmacol. 2020;11:639. doi: 10.3389/fphar.2020.00639. PubMed DOI PMC