Glycerol-Enhanced Gum Karaya Hydrogel Films with a Sandwich-like Structure Enriched with Octenidine for Antibacterial Action against Multidrug-Resistant Bacteria
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40687006
PubMed Central
PMC12268733
DOI
10.1021/acsomega.5c02915
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
This study explores the innovative approach in the development of freeze-dried hydrogel films, leveraging the unique properties of gum Karaya (GK), poly-(vinyl alcohol) (PVA), poly-(ethylene glycol) (PEG), and glycerol with a coating of octenidine dihydrochloride (OCT). These innovative hydrogel films exhibit at a certain glycerol concentration a sandwich-like structure, achieved through a tailored freeze-drying process, which enhances transparency and mechanical stability. OCT provides superior antibacterial performance, effectively combating multidrug-resistant bacteria with a controlled and gradual release mechanism, surpassing conventional OCT solutions that require frequent reapplication for infected wound treatment without the creation of bacterial resistance. Advanced environmental scanning electron microscopy (A-ESEM) reveals the complex microstructure of the hydrogel, highlighting the dense surface layer and interconnected porous bulk. Variations in glycerol concentrations proved to significantly impact hydrogels' properties. Increasing the glycerol concentration decreases the pore size (around 4.5 μm) while enhancing the polymer network density and flexibility. However, low concentration increases the pore size (7.8-15.6 μm), impacting enhanced swelling behavior and hydrolytic stability. OCT's rapid antibacterial action, releasing over 30% within the first hour and maintaining prolonged activity for up to 2 weeks, emphasizes the material's potential for diverse applications. Hydrogels' remarkable transparency, porosity, structural stability, and antibacterial efficacy against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli strains suggest promising uses as transparent dressings, biomedical devices, and infection-resistant surfaces.
See more in PubMed
Ullah A., Lim S. I.. Bioinspired Tunable Hydrogels: An Update on Methods of Preparation, Classification, and Biomedical and Therapeutic Applications. Int. J. Pharm. 2022;612:121368. doi: 10.1016/j.ijpharm.2021.121368. PubMed DOI
Peng T., Shi Q., Chen M., Yu W., Yang T.. Antibacterial-Based Hydrogel Coatings and Their Application in the Biomedical FieldA Review. J. Funct. Biomater. 2023;14(5):243. doi: 10.3390/jfb14050243. PubMed DOI PMC
Abdel-Rahman R. M., Abdel-Mohsen A. M., Frankova J., Piana F., Kalina L., Gajdosova V., Kapralkova L., Thottappali M. A., Jancar J.. Self-Assembled Hydrogel Membranes with Structurally Tunable Mechanical and Biological Properties. Biomacromolecules. 2024;25(6):3449–3463. doi: 10.1021/acs.biomac.4c00082. PubMed DOI PMC
Wichterle O., Lim D.. Hydrophilic Gels for Biological Use. Nature. 1960;185(4706):117–118. doi: 10.1038/185117a0. DOI
Nasution H., Harahap H., Dalimunthe N. F., Ginting M. H. S., Jaafar M., Tan O. O. H., Aruan H. K., Herfananda A. L.. Hydrogel and Effects of Crosslinking Agent on Cellulose-Based Hydrogels: A Review. Gels. 2022;8(9):568. doi: 10.3390/gels8090568. PubMed DOI PMC
Koosha M., Aalipour H., Shirazi M. J. S., Jebali A., Chi H., Hamedi S., Wang N., Li T., Moravvej H.. Physically Crosslinked Chitosan/Pva Hydrogels Containing Honey and Allantoin with Long-Term Biocompatibility for Skin Wound Repair: An in Vitro and in Vivo Study. J. Funct. Biomater. 2021;12(4):61. doi: 10.3390/jfb12040061. PubMed DOI PMC
Jia B., Li G., Cao E., Luo J., Zhao X., Huang H.. Recent Progress of Antibacterial Hydrogels in Wound Dressings. Mater. Today Bio. 2023;19:100582. doi: 10.1016/j.mtbio.2023.100582. PubMed DOI PMC
Nowak D., Jakubczyk E.. The Freeze-Drying of FoodsThe Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials. Foods. 2020;9(10):1488. doi: 10.3390/foods9101488. PubMed DOI PMC
Malik N., Gouseti O., Bakalis S.. Effect of Freezing with Temperature Fluctuations on Microstructure and Dissolution Behavior of Freeze-Dried High Solid Systems. Energy Procedia. 2017;123:2–9. doi: 10.1016/j.egypro.2017.07.277. DOI
Indira V., Abhitha K.. Mesoporogen-Free Synthesis of Hierarchical Zeolite A for CO2 Capture: Effect of Freeze Drying on Surface Structure, Porosity and Particle Size. Results Eng. 2023;17:100886. doi: 10.1016/j.rineng.2023.100886. DOI
Grenier J., Duval H., Barou F., Lv P., David B., Letourneur D.. Mechanisms of Pore Formation in Hydrogel Scaffolds Textured by Freeze-Drying. Acta Biomater. 2019;94:195–203. doi: 10.1016/j.actbio.2019.05.070. PubMed DOI
Watanabe M., Li H., Yamamoto M., Horinaka J. ichi., Tabata Y., Flake A. W.. Addition of Glycerol Enhances the Flexibility of Gelatin Hydrogel Sheets; Application for in Utero Tissue Engineering. J. Biomed. Mater. Res., Part B. 2021;109(6):921–931. doi: 10.1002/jbm.b.34756. PubMed DOI
Ghosh B., Bhattacharya D., Mukhopadhyay M.. Fabrication of Natural Polysaccharide Based Hydrogel with Utility to Entrap Pollutants. J. Phys.: Conf. Ser. 2021;1797(1):012060. doi: 10.1088/1742-6596/1797/1/012060. DOI
Postulkova H., Chamradova I., Pavlinak D., Humpa O., Jancar J., Vojtova L.. Study of Effects and Conditions on the Solubility of Natural Polysaccharide Gum Karaya. Food Hydrocolloids. 2017;67:148–156. doi: 10.1016/j.foodhyd.2017.01.011. DOI
Singh B., Pal L.. Radiation Crosslinking Polymerization of Sterculia Polysaccharide-PVA-PVP for Making Hydrogel Wound Dressings. Int. J. Biol. Macromol. 2011;48(3):501–510. doi: 10.1016/j.ijbiomac.2011.01.013. PubMed DOI
Patra N., Martinová L., Stuchlik M., Černík M.. Structure-Property Relationships in Sterculia Urens/Polyvinyl Alcohol Electrospun Composite Nanofibres. Carbohydr. Polym. 2015;120:69–73. doi: 10.1016/j.carbpol.2014.12.002. PubMed DOI
Drápalová E., Michlovská L., Poštulková H., Chamradová I., Lipový B., Holoubek J., Vacek L., Růžička F., Hanslianová M., Svobodová T., Černá E., Hrdličková B., Vojtová L.. Antimicrobial Cost-Effective Transparent Hydrogel Films from Renewable Gum Karaya/Chitosan Polysaccharides for Modern Wound Dressings. ACS Appl. Polym. Mater. 2023;5(4):2774–2786. doi: 10.1021/acsapm.3c00025. DOI
Postulkova H., Nedomova E., Hearnden V., Holland C., Vojtova L.. Hybrid Hydrogels Based on Polysaccharide Gum Karaya, Poly(Vinyl Alcohol) and Silk Fibroin. Mater. Res. Express. 2019;6(3):035304. doi: 10.1088/2053-1591/aaf45d. DOI
Varaprasad K., Raghavendra G. M., Jayaramudu T., Yallapu M. M., Sadiku R.. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng., C. 2017;79:958–971. doi: 10.1016/j.msec.2017.05.096. PubMed DOI
Teodorescu M., Bercea M., Morariu S.. Biomaterials of Poly(Vinyl Alcohol) and Natural Polymers. Polym. Rev. 2018;58(2):247–287. doi: 10.1080/15583724.2017.1403928. DOI
Wu F., Gao J., Xiang Y., Yang J.. Enhanced Mechanical Properties of PVA Hydrogel by Low-Temperature Segment Self-Assembly vs. Freeze–Thaw Cycles. Polymers. 2023;15(18):3782. doi: 10.3390/polym15183782. PubMed DOI PMC
Peng Z., Li Z., Zhang F., Peng X.. Preparation and Properties of Polyvinyl Alcohol/Collagen Hydrogel. J. Macromol. Sci., Part B: Phys. 2012;51(10):1934–1941. doi: 10.1080/00222348.2012.660060. DOI
Kamoun E. A., Kenawy E. R. S., Chen X.. A Review on Polymeric Hydrogel Membranes for Wound Dressing Applications: PVA-Based Hydrogel Dressings. J. Adv. Res. 2017;8(3):217–233. doi: 10.1016/j.jare.2017.01.005. PubMed DOI PMC
Guo M., Yan J., Yang X., Lai J., An P., Wu Y., Li Z., Lei W., Smith A. T., Sun L.. A Transparent Glycerol-Hydrogel with Stimuli-Responsive Actuation Induced Unexpectedly at Subzero Temperatures. J. Mater. Chem. A. 2021;9(12):7935–7945. doi: 10.1039/D1TA00112D. DOI
Vieira M. G. A., Da Silva M. A., Dos Santos L. O., Beppu M. M.. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011;47(3):254–263. doi: 10.1016/j.eurpolymj.2010.12.011. DOI
Hardman D., George Thuruthel T., Iida F.. Self-Healing Ionic Gelatin/Glycerol Hydrogels for Strain Sensing Applications. NPG Asia Mater. 2022;14(1):11. doi: 10.1038/s41427-022-00357-9. DOI
Ahmed A. S., Mandal U. K., Taher M., Susanti D., Jaffri J. M.. PVA-PEG Physically Cross-Linked Hydrogel Film as a Wound Dressing: Experimental Design and Optimization. Pharm. Dev. Technol. 2018;23(8):751–760. doi: 10.1080/10837450.2017.1295067. PubMed DOI
Chen S. L., Fu R. H., Liao S. F., Liu S. P., Lin S. Z., Wang Y. C.. A PEG-Based Hydrogel for Effective Wound Care Management. Cell Transplant. 2018;27(2):275–284. doi: 10.1177/0963689717749032. PubMed DOI PMC
Matica M. A., Aachmann F. L., Tøndervik A., Sletta H., Ostafe V.. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019;20(23):5889. doi: 10.3390/ijms20235889. PubMed DOI PMC
Dorazilová J., Muchová J., Šmerková K., Kočiová S., Diviš P., Kopel P., Veselý R., Pavliňáková V., Adam V., Vojtová L.. Synergistic Effect of Chitosan and Selenium Nanoparticles on Biodegradation and Antibacterial Properties of Collagenous Scaffolds Designed for Infected Burn Wounds. Nanomaterials. 2020;10(10):1971. doi: 10.3390/nano10101971. PubMed DOI PMC
Terreni M., Taccani M., Pregnolato M.. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules. 2021;26(9):2671. doi: 10.3390/molecules26092671. PubMed DOI PMC
Seshadri D. R., Bianco N. D., Radwan A. N., Zorman C. A., Bogie K. M.. An Absorbent, Flexible, Transparent, and Scalable Substrate for Wound Dressings. IEEE J. Transl. Eng. Health Med. 2022;10:1. doi: 10.1109/JTEHM.2022.3172847. PubMed DOI PMC
Moritz S., Wiegand C., Wesarg F., Hessler N., Müller F. A., Kralisch D., Hipler U. C., Fischer D.. Active Wound Dressings Based on Bacterial Nanocellulose as Drug Delivery System for Octenidine. Int. J. Pharm. 2014;471(1–2):45–55. doi: 10.1016/j.ijpharm.2014.04.062. PubMed DOI
Alkhatib Y., Dewaldt M., Moritz S., Nitzsche R., Kralisch D., Fischer D.. Controlled Extended Octenidine Release from a Bacterial Nanocellulose/Poloxamer Hybrid System. Eur. J. Pharm. Biopharm. 2017;112:164–176. doi: 10.1016/j.ejpb.2016.11.025. PubMed DOI
Kampf, G. Antiseptic Stewardship. In Biocide Resistance and Clinical Implications; Springer Cham, 2018; pp 1–694.
Tee Y. B., Ching T. M., Tee Y. B., Wong J., Tan M. C., Talib R. A.. Development of Edible Film from Flaxseed Mucilage. BioResources. 2016;11(4):10286–10295. doi: 10.15376/biores.11.4.10286-10295. DOI
Stelate A., Tihlǎ E.. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules. 2021;11:1407. doi: 10.3390/biom11101407. PubMed DOI PMC
Neděla V., Tihlaříková E., Cápal P., Doležel J.. Advanced Environmental Scanning Electron Microscopy Reveals Natural Surface Nano-Morphology of Condensed Mitotic Chromosomes in Their Native State. Sci. Rep. 2024;14(1):12998. doi: 10.1038/s41598-024-63515-9. PubMed DOI PMC
Neděla V., Ned V.. et al. High-Efficiency Detector of Secondary and Backscattered Electrons for Low-Dose Imaging in the ESEM. Ultramicroscopy. 2018;184:1–11. doi: 10.1016/j.ultramic.2017.08.003. PubMed DOI
Neděla V., Zla J., Konvalina I., Lencova B.. Comparison of Calculated, Simulated and Measured Signal Amplification in a Variable Pressure SEM. Nucl. Instrum. Methods Phys. Res., Sect. A. 2011;645:79–83. doi: 10.1016/j.nima.2010.12.200. DOI
Neděla, V. ; Tihlaříková, E. ; Hřib, J. . The Low-Temperature Method for Study of Coniferous Tissues in the Environmental Scanning Electron Microscope 2015. 78 13 10.1002/jemt.22439. PubMed DOI
Neděla V., Hřib J., Havel L.. et al. Imaging of Norway Spruce Early Somatic Embryos with the ESEM, Cryo-SEM and Laser Scanning Microscope. Micron. 2016;84:67–71. doi: 10.1016/j.micron.2016.02.011. PubMed DOI
Tihlaříková E., Neděla V., Đorđević B.. In-Situ Preparation of Plant Samples in ESEM for Energy Dispersive x-Ray Microanalysis and Repetitive Observation in SEM and ESEM. Sci. Rep. 2019;9(1):2300. doi: 10.1038/s41598-019-38835-w. PubMed DOI PMC
Mucha, J. ; Muchová, J. . SEMIPE Software. http://www.semipe.utko.feec.vutbr.cz/.
The European Committee on Antimicrobial Susceptibility Testing . Breakpoint Tables for Interpretation of MICs and Zone Diameters. https://www.eucast.org/clinical_breakpoints.
Sedlář M., Kacvinská K., Fohlerová Z., Izsák D., Chalupová M., Suchý P., Dohnalová M., Sopuch T., Vojtová L.. A Synergistic Effect of Fibrous Carboxymethyl Cellulose with Equine Collagen Improved the Hemostatic Properties of Freeze-Dried Wound Dressings. Cellulose. 2023;30(17):11113–11131. doi: 10.1007/s10570-023-05499-9. DOI
Bialik-Wąs K., Pluta K., Malina D., Barczewski M., Malarz K., Mrozek-Wilczkiewicz A.. The Effect of Glycerin Content in Sodium Alginate/Poly(Vinyl Alcohol)-Based Hydrogels for Wound Dressing Application. Int. J. Mol. Sci. 2021;22(21):12022. doi: 10.3390/ijms222112022. PubMed DOI PMC
Drápalová E., Michlovsk L., Poštulková H., Chamradov I.. et al. Antimicrobial Cost-Effective Transparent Hydrogel Films from Renewable Gum Karaya/Chitosan Polysaccharides for Modern Wound Dressings. ACS Appl. Polym. Mater. 2023;5:2774. doi: 10.1021/acsapm.3c00025. DOI
Hajji S., Chaker A., Jridi M., Maalej H., Jellouli K., Boufi S., Nasri M.. Structural Analysis, and Antioxidant and Antibacterial Properties of Chitosan-Poly (Vinyl Alcohol) Biodegradable Films. Environ. Sci. Pollut. Res. 2016;23(15):15310–15320. doi: 10.1007/s11356-016-6699-9. PubMed DOI
Neděla V., Tihlaříková E., Runštuk J., Hudec J.. High-Efficiency Detector of Secondary and Backscattered Electrons for Low-Dose Imaging in the ESEM. Ultramicroscopy. 2018;184:1–11. doi: 10.1016/j.ultramic.2017.08.003. PubMed DOI
Neděla V., Tihlaříková E., Hřib J.. The Low-Temperature Method for Study of Coniferous Tissues in the Environmental Scanning Electron Microscope. Microsc. Res. Tech. 2015;78(1):13–21. doi: 10.1002/jemt.22439. PubMed DOI
Neděla V., Tihlaříková E., Maxa J., Imrichová K., Bučko M., Gemeiner P.. Simulation-Based Optimisation of Thermodynamic Conditions in the Esem for Dynamical in-Situ Study of Spherical Polyelectrolyte Complex Particles in Their Native State. Ultramicroscopy. 2020;211:112954. doi: 10.1016/j.ultramic.2020.112954. PubMed DOI
Zhou Z., Liu K., Ban Z., Yuan W.. Highly Adhesive, Self-Healing, Anti-Freezing and Anti-Drying Organohydrogel with Self-Power and Mechanoluminescence for Multifunctional Flexible Sensor. Composites, Part A. 2022;154:106806. doi: 10.1016/j.compositesa.2022.106806. DOI
Zhang X., Yu Y., Jiang Z., Wang H.. The Effect of Freezing Speed and Hydrogel Concentration on the Microstructure and Compressive Performance of Bamboo-Based Cellulose Aerogel. J. Wood Sci. 2015;61(6):595–601. doi: 10.1007/s10086-015-1514-7. DOI
Sornkamnerd S., Okajima M. K., Kaneko T.. Tough and Porous Hydrogels Prepared by Simple Lyophilization of LC Gels. ACS Omega. 2017;2(8):5304–5314. doi: 10.1021/acsomega.7b00602. PubMed DOI PMC
Simoni R. C., Lemes G. F., Fialho S., Gonçalves O. H., Gozzo A. M., Chiaradia V., Sayer C., Shirai M. A., Leimann F. V.. Effect of Drying Method on Mechanical, Thermal and Water Absorption Properties of Enzymatically Crosslinked Gelatin Hydrogels. An. Acad. Bras. Cienc. 2017;89(1):745–755. doi: 10.1590/0001-3765201720160241. PubMed DOI
Samadi A., Azandeh S., Orazizadeh M., Bayati V., Rafienia M., Karami M. A.. Fabrication and Characterization of Glycerol/Chitosan/Polyvinyl Alcohol-Based Transparent Hydrogel Films Loaded with Silver Nanoparticles for Antibacterial Wound Dressing Applications. Adv. Biomed. Res. 2021;10(1):4. doi: 10.4103/abr.abr_211_20. PubMed DOI PMC
Nemes D., Kovács R., Nagy F., Mezo M., Poczok N., Ujhelyi Z., Peto A., Fehér P., Fenyvesi F., Váradi J., Vecsernyés M., Bácskay I.. Interaction between Different Pharmaceutical Excipients in Liquid Dosage FormsAssessment of Cytotoxicity and Antimicrobial Activity. Molecules. 2018;23(7):1827. doi: 10.3390/molecules23071827. PubMed DOI PMC
Davidson A. F., Glasscock C., McClanahan D. R., Benson J. D., Higgins A. Z.. Toxicity Minimized Cryoprotectant Addition and Removal Procedures for Adherent Endothelial Cells. PLoS One. 2015;10(11):e0142828. doi: 10.1371/journal.pone.0142828. PubMed DOI PMC
Coaguila-Llerena H., Rodrigues E. M., Santos C. S., Ramos S. G., Medeiros M. C., Chavez-Andrade G. M., Guerreiro-Tanomaru J. M., Tanomaru-Filho M., Faria G.. Effects of Octenidine Applied Alone or Mixed with Sodium Hypochlorite on Eukaryotic Cells. Int. Endod. J. 2020;53(9):1264–1274. doi: 10.1111/iej.13347. PubMed DOI
Cai X., Venkatesan J. K., Schmitt G., Reda B., Cucchiarini M., Hannig M., Madry H.. Cytotoxic Effects of Different Mouthwash Solutions on Primary Human Articular Chondrocytes and Normal Human Articular Cartilage – an in Vitro Study. Clin. Oral Invest. 2023;27:4987. doi: 10.1007/s00784-023-05118-8. PubMed DOI PMC
Lipový B., Holoubek J., Vacek L., Růžička F., Nedomová E., Poštulková H., Vojtová L.. Antimicrobial Effect of Novel Hydrogel Matrix Based on Natural Polysaccharide Sterculia Urens. Epidemiol., Mikrobiol., Imunol. 2018;67(4):166–174. PubMed
Da Chum J., Lim D. J. Z., Sheriff S. O., Pulikkotil S. J., Suresh A., Davamani F.. In Vitro Evaluation of Octenidine as an Antimicrobial Agent against Staphylococcus Epidermidis in Disinfecting the Root Canal System. Restor. Dent. Endod. 2019;44(1):e8. doi: 10.5395/rde.2019.44.e8. PubMed DOI PMC
Malanovic N., Ön A., Pabst G., Zellner A., Lohner K.. Octenidine: Novel Insights into the Detailed Killing Mechanism of Gram-Negative Bacteria at a Cellular and Molecular Level. Int. J. Antimicrob. Agents. 2020;56(5):106146. doi: 10.1016/j.ijantimicag.2020.106146. PubMed DOI