Advanced environmental scanning electron microscopy reveals natural surface nano-morphology of condensed mitotic chromosomes in their native state

. 2024 Jun 06 ; 14 (1) : 12998. [epub] 20240606

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38844535

Grantová podpora
GA22-25799S Grantová Agentura České Republiky

Odkazy

PubMed 38844535
PubMed Central PMC11156959
DOI 10.1038/s41598-024-63515-9
PII: 10.1038/s41598-024-63515-9
Knihovny.cz E-zdroje

The challenge of in-situ handling and high-resolution low-dose imaging of intact, sensitive and wet samples in their native state at nanometer scale, including live samples is met by Advanced Environmental Scanning Electron Microscopy (A-ESEM). This new generation of ESEM utilises machine learning-based optimization of thermodynamic conditions with respect to sample specifics to employ a low temperature method and an ionization secondary electron detector with an electrostatic separator. A modified electron microscope was used, equipped with temperature, humidity and gas pressure sensors for in-situ and real-time monitoring of the sample. A transparent ultra-thin film of ionic liquid is used to increase thermal and electrical conductivity of the samples and to minimize sample damage by free radicals. To validate the power of the new method, we analyze condensed mitotic metaphase chromosomes to reveal new structural features of their perichromosomal layer, and the organization of chromatin fibers, not observed before by any microscopic technique. The ability to resolve nano-structural details of chromosomes using A-ESEM is validated by measuring gold nanoparticles with achievable resolution in the lower nanometre units.

Zobrazit více v PubMed

Reimer L. In: Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Hawkes PW, editor. Springer-Verlag; 1985.

Thiberge S, Nechushtan A, Sprinzak D, Gileadi O, Behar V, Zik O, et al. Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl. Acad. Sci. USA. 2004;101(10):3346–3351. doi: 10.1073/pnas.0400088101. PubMed DOI PMC

de Jonge N, Peckys DB, Kremers GJ, Piston DW. Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. U.S.A. 2009;106(7):2159–2164. doi: 10.1073/pnas.0809567106. PubMed DOI PMC

Mastrangelo R, Okada T, Ogura T, Baglioni P. Direct observation of the effects of chemical fixation in MNT-1 cells: A SE-ADM and Raman study. Proc. Natl. Acad. Sci. U.S.A. 2023 doi: 10.1073/pnas.2308088120. PubMed DOI PMC

Dordevic B, Neděla V, Tihlaříková E, Trojan V, Havel L. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. New Biotechnol. 2019;48:35–43. doi: 10.1016/j.nbt.2018.05.005. PubMed DOI

Danilatos GD. Design and construction of an atmospheric or environmental SEM (part 1) Scanning. 1981;4(1):9–20. doi: 10.1002/sca.4950040102. DOI

Donald A. The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nat. Mater. 2003;2:511–516. doi: 10.1038/nmat898. PubMed DOI

Neděla V, Tihlaříková E, Maxa J, Imrichová K, Bučko M, Gemeiner P. Simulation-based optimisation of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state. Ultramicroscopy. 2020 doi: 10.1016/j.ultramic.2020.112954. PubMed DOI

Fleming W. In: Zellsubstanz, Kern und Zelltheilung. Vogel FCW, editor. Verlag; 1882.

Olins DE, Olins AL. Chromatin history: Our view from the bridge. Nat. Rev. Mol. Cell. Biol. 2003;4:809–814. doi: 10.1038/nrm1225. PubMed DOI

Finch JT, Klug A. Solenoidal model for superstructure in chromatin. Proc. Natl. Acad. Sci. U.S.A. 1976;73:1897–1901. doi: 10.1073/pnas.73.6.1897. PubMed DOI PMC

Eltsov M, MacLellana KM, Maeshimad K, Frangakisb AS, Duboche J. Analysis of cryo-electron microscopy images does not support the existence of 30 nm chromatin fibers in mitotic chromosomes in situ. Proc. Natl. Acad. Sci. U.S.A. 2008;105(50):19732–19737. doi: 10.1073/pnas.0810057105. PubMed DOI PMC

Cai S, Chen C, Tan ZY, Huang Y, Shi J, Gan L. Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo. Proc. Natl. Acad. Sci. U.S.A. 2018;115(43):10977–10982. doi: 10.1073/pnas.1720476115. PubMed DOI PMC

Sanborn AL, Rao SSP, Huang S-C, Durand NC, Huntley MH, Jewett AI, et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. U.S.A. 2015;112:6456–6465. doi: 10.1073/pnas.1518552112. PubMed DOI PMC

Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O’Shea CC. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science. 2017 doi: 10.1126/science.aag0025. PubMed DOI PMC

Sartsanga CH, Phengchat R, Fukui K, Wako T, Ohmido N. Surface structures consisting of chromatin fibers in isolated barley (Hordeum vulgare) chromosomes revealed by helium ion microscopy. Chrom. Res. 2021;29(1):81–94. doi: 10.1007/s10577-021-09649-2. PubMed DOI

Beseda T, Cápal P, Kubalová I, Schubert V, Doležel J, Šimková H. Mitotic chromosome organization: General rules meet species-specific variability. Comput. Struct. Biotechnol. 2020;18:1311–1319. doi: 10.1016/j.csbj.2020.01.006. PubMed DOI PMC

Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, et al. A pathway for mitotic chromosome formation. Science. 2018 doi: 10.1126/science.aao6135. PubMed DOI PMC

Stenström L, Mahdessian D, Gnann C, Cesnik AJ, Ouyang W, Leonetti MD, et al. Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder. Mol. Syst. Biol. 2020 doi: 10.15252/msb.20209469. PubMed DOI PMC

Perutka Z, Kaduchová K, Chamrád I, Beinhauer J, Lenobel R, Lenobel B, et al. Proteome analysis of condensed barley mitotic chromosomes. Front. Plant Sci. 2021 doi: 10.3389/fpls.2021.723674. PubMed DOI PMC

Booth DG, Beckett AJ, Molina O, Samejima I, Masumoto M, Kouprina N, et al. 3D-CLEM reveals that a major portion of mitotic chromosomes is not chromatin. Mol. Cell. 2016;64:790–802. doi: 10.1016/j.molcel.2016.10.009. PubMed DOI PMC

Booth DG, Earnshaw WC. Ki-67 and the chromosome periphery compartment in mitosis. Trends Cell Biol. 2017;27(12):906–916. doi: 10.1016/j.tcb.2017.08.001. PubMed DOI

Kubalová I, Câmara AS, Cápal P, Beseda T, Rouillard J-M, Krause GM, et al. Helical coiling of metaphase chromatids. Nucleic Acids Res. 2023;51(6):2641–2654. doi: 10.1093/nar/gkad028. PubMed DOI PMC

Hayashi Y, Kato K, Kimura K. The hierarchical structure of the perichromosomal layer comprises Ki67, ribosomal RNAs, and nucleolar proteins. Biochem. Biophys. Res. Commun. 2017;493(2):1043–1049. doi: 10.1016/j.bbrc.2017.09.092. PubMed DOI

Hamano T, Dwiranti A, Kaneyoshi K, Fukuda S, Kometani R, Nakao M, et al. Chromosome interior observation by focused ion beam/scanning electron microscopy (FIB/SEM) using ionic liquid technique. Microsc. Microanal. 2014;20:1340–1347. doi: 10.1017/S143192761401280X. PubMed DOI

Royall CP, Thiel BL, Donald AM. Radiation damage of water in environmental scanning electron microscopy. J. Microsc. 2001;204:185–195. doi: 10.1046/j.1365-2818.2001.00948.x. PubMed DOI

Neděla V, Tihlaříková E, Hřib J. The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope. Microsc. Res. Tech. 2015;78(1):13–21. doi: 10.1002/jemt.22439. PubMed DOI

Fránková M, Poulíčková A, Neděla V, Tihlaříková E, Šumberová K, Letáková M. The low temperature method for environmental scanning electron microscopy: A new method for observation of diatom assemblages in vivo. Diatom Res. 2018;33(3):397–403. doi: 10.1080/0269249X.2018.1545703. DOI

Cameron RE, Donald AM. Minimizing sample evaporation in the environmental scanning electron microscope. J. Microsc. 1994;173(3):227–237. doi: 10.1111/j.1365-2818.1994.tb03445.x. DOI

Vila J, Franjo C, Pico J, Varela LM, Cabeza Ó. Temperature behavior of the electrical conductivity of emim-based ionic liquids in liquid and solid states. Port. Electrochim. Acta. 2007;25:163–172. doi: 10.4152/pea.200701163. DOI

Závacká K, Neděla V, Olbert M, Tihlaříková E, Vetráková Ľ, Yang X, et al. Temperature and concentration affect particle size upon sublimation of saline ice: Implications for sea salt aerosol production in polar regions. Geophys. Res. Lett. 2022 doi: 10.1029/2021GL097098. DOI

Vetráková Ľ, Neděla V, Runštuk J, Heger D. The morphology of ice and liquid brine in an environmental scanning electron microscope: A study of the freezing methods. Cryosphere. 2019;13(9):2385–2405. doi: 10.5194/tc-13-2385-2019. DOI

Neděla V, Tihlaříková E, Runštuk J, Hudec J. High-efficiency detector of secondary and backscattered electrons for low-dose imaging in the ESEM. Ultramicroscopy. 2018;184A:1–11. doi: 10.1016/j.ultramic.2017.08.003. PubMed DOI

Ishigaki Y, Nakamura Y, Takehara T, Nemoto N, Kurihara T, Koga H, et al. Ionic liquid enables simple and rapid sample preparation of human culturing cells for scanning electron microscope analysis. Microsc. Res. Tech. 2011;74(5):415–420. doi: 10.1002/jemt.20924. PubMed DOI

de Morais P, Gonçalves F, Coutinho JAP, Ventura SPM. Ecotoxicity of cholinium-based deep eutectic solvents. ACS Sustain. Chem. Eng. 2015;3(12):3398–3404. doi: 10.1021/acssuschemeng.5b01124. DOI

Schroeder-Reiter E, Wanner G. Scanning electron microscopy of chromosomes: Structural and analytical investigations. In: Schatten H, editor. Scanning Electron Microscopy for the Life Science. Cambridge University Press; 2012. pp. 137–164.

Wightman R. An overview of cryo-scanning electron microscopy technique for plant imaging. Plants. 2022;11(9):1113. doi: 10.3390/plants11091113. PubMed DOI PMC

Nishino Y, Eltsov M, Joti Y, Ito K, Takata H, Takahashi Y, et al. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30 nm chromatin structure. EMBO J. 2012;31(7):1644–1653. doi: 10.1038/emboj.2012.35. PubMed DOI PMC

Portillo-Ledesma S, Tsao LH, Wagley M, Lakadamyali M, Cosma MP, Schlick T. Nucleosome clutches are regulated by chromatin internal parameters. J. Mol. Biol. 2021 doi: 10.1016/j.jmb.2020.11.001. PubMed DOI PMC

Hernandez-Verdun D, Gautier T. The chromosome periphery during mitosis. Bioessays. 1994;16(3):179–185. doi: 10.1002/bies.950160308. PubMed DOI

Chu L, Liang Z, Mukhina M, Fisher J, Vincenten N, Zhang Z, et al. The 3D topography of mitotic chromosomes. Mol. Cell. 2020;79:1–15. doi: 10.1016/j.molcel.2020.07.002. PubMed DOI PMC

Kuznetsova MA, Chaban IA, Sheval EV. Visualization of chromosome condensation in plants with large chromosomes. BMC Plant. Biol. 2017;17(1):153. doi: 10.1186/s12870-017-1102-7. PubMed DOI PMC

Wanner G, Schroeder-Reiter E, Formanek H. 3D Analysis of chromosome architecture: Advantages and limitations with SEM. Cytogenet. Genome Res. 2005;109:70–78. doi: 10.1159/000082384. PubMed DOI

Iwano M, Fukui K, Takaichi S, Isogai A. Globular and fibrous structure in barley chromosomes revealed by high-resolution scanning electron microscopy. Chromosome Res. 1997;5:341–349. doi: 10.1023/B:CHRO.0000038766.53836.c3. PubMed DOI

Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, et al. CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma. 2007;116:275–283. doi: 10.1007/s00412-007-0102-z. PubMed DOI

Danilatos GD. Advances in Electronics and Electron Physics. Academic Press; 1988. Foundations of environmental scanning electron microscopy; pp. 109–250.

Stelate A, Tihlaříková E, Schwarzerová K, Neděla V, Petrášek J. Correlative light-environmental scanning electron microscopy of plasma membrane efflux carriers of plant hormone auxin. Biomolecules. 2021 doi: 10.3390/biom11101407. PubMed DOI PMC

Lysák MA, Cíhalíková J, Kubaláková M, Simková H, Künzel G, Dolezel J. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.) Chromosome Res. 1999;7:431–444. doi: 10.1023/A:1009293628638. PubMed DOI

Doležel J, Cíhalíková J, Lucretti S. A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta. 1992;188:93–98. doi: 10.1007/BF00198944. PubMed DOI

Kubaláková M, Kovářová P, Suchánková P, Číhalíková J, Bartoš J, Lucretti S, et al. Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics. 2005;170:823–829. doi: 10.1534/genetics.104.039180. PubMed DOI PMC

Vapnik VN. The Nature of Statistical Learning Theory. Springer; 2000.

Yuan L, Zhong G. Robust ε-support vector regression. Math. Probl. Eng. 2014 doi: 10.1155/2014/373571. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...