Proteome Analysis of Condensed Barley Mitotic Chromosomes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34497629
PubMed Central
PMC8419432
DOI
10.3389/fpls.2021.723674
Knihovny.cz E-zdroje
- Klíčová slova
- FIBRILLARIN 1, barley, chromatin, flow cytometric sorting, mass spectrometry, mitotic chromosome, perichromosomal layer, protein prediction,
- Publikační typ
- časopisecké články MeSH
Proteins play a major role in the three-dimensional organization of nuclear genome and its function. While histones arrange DNA into a nucleosome fiber, other proteins contribute to higher-order chromatin structures in interphase nuclei, and mitotic/meiotic chromosomes. Despite the key role of proteins in maintaining genome integrity and transferring hereditary information to daughter cells and progenies, the knowledge about their function remains fragmentary. This is particularly true for the proteins of condensed chromosomes and, in particular, chromosomes of plants. Here, we purified barley mitotic metaphase chromosomes by a flow cytometric sorting and characterized their proteins. Peptides from tryptic protein digests were fractionated either on a cation exchanger or reversed-phase microgradient system before liquid chromatography coupled to tandem mass spectrometry. Chromosomal proteins comprising almost 900 identifications were classified based on a combination of software prediction, available database localization information, sequence homology, and domain representation. A biological context evaluation indicated the presence of several groups of abundant proteins including histones, topoisomerase 2, POLYMERASE 2, condensin subunits, and many proteins with chromatin-related functions. Proteins involved in processes related to DNA replication, transcription, and repair as well as nucleolar proteins were found. We have experimentally validated the presence of FIBRILLARIN 1, one of the nucleolar proteins, on metaphase chromosomes, suggesting that plant chromosomes are coated with proteins during mitosis, similar to those of human and animals. These results improve significantly the knowledge of plant chromosomal proteins and provide a basis for their functional characterization and comparative phylogenetic analyses.
Zobrazit více v PubMed
Altschul S. F., Wootton J. C., Gertz E. M., Agarwala R., Morgulis A., Schäffer A. A., et al. . (2005). Protein database searches using compositionally adjusted substitution matrices. FEBS J. 272, 5101–5109. 10.1111/j.1742-4658.2005.04945.x, PMID: PubMed DOI PMC
Antonin W., Neumann H. (2016). Chromosome condensation and decondensation during mitosis. Curr. Opin. Cell Biol. 40, 15–22. 10.1016/j.ceb.2016.01.013, PMID: PubMed DOI
Baker K., Dhillon T., Colas I., Cook N., Milne I., Milne L., et al. . (2015). Chromatin state analysis of the barley epigenome reveals a higher-order structure defined by H3K27me1 and H3K27me3 abundance. Plant J. 84, 111–124. 10.1111/tpj.12963, PMID: PubMed DOI PMC
Bigeard J., Rayapuram N., Bonhomme L., Hirt H., Pflieger D. (2014). Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana. Proteomics 14, 2141–2155. 10.1002/pmic.201400072, PMID: PubMed DOI
Blavet N., Uřinovská J., Jeřábková H., Chamrád I., Vrána J., Lenobel R., et al. . (2017). UNcleProt (universal nuclear protein database of barley): The first nuclear protein database that distinguishes proteins from different phases of the cell cycle. Nucleus 8, 70–80. 10.1080/19491034.2016.1255391, PMID: PubMed DOI PMC
Blythe S. A., Wieschaus E. F. (2016). Establishment and maintenance of heritable chromatin structure during early drosophila embryogenesis. eLife 5:e20148. 10.7554/eLife.20148, PMID: PubMed DOI PMC
Booth D. G., Beckett A. J., Molina O., Samejima I., Masumoto H., Kouprina N., et al. . (2016). 3D-CLEM reveals that a major portion of mitotic chromosomes is not chromatin. Mol. Cell 64, 790–802. 10.1016/j.molcel.2016.10.009, PMID: PubMed DOI PMC
Booth D. G., Takagi M., Sanchez-Pulido L., Petfalski E., Vargiu G., Samejima K., et al. . (2014). Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery. eLife 3:e01641. 10.7554/eLife.01641, PMID: PubMed DOI PMC
Brameier M., Krings A., MacCallum R. M. (2007). NucPred—predicting nuclear localization of proteins. Bioinformatics 23, 1159–1160. 10.1093/bioinformatics/btm066, PMID: PubMed DOI
Chamrád I., Simerský R., Bérešová L., Strnad M., Šebela M., Lenobel R. (2014). Proteomic identification of a candidate sequence of wheat cytokinin-binding protein 1. J. Plant Growth Regul. 33, 896–902. 10.1007/s00344-014-9419-z DOI
Chamrád I., Uřinovská J., Petrovská B., Jeřábková H., Lenobel R., Vrána J., et al. . (2018). Identification of plant nuclear proteins based on a combination of flow sorting, SDS-PAGE, and LC-MS/MS analysis. Methods Mol. Biol. 1696, 57–79. 10.1007/978-1-4939-7411-5_4, PMID: PubMed DOI
Cheeseman I. M. (2014). The kinetochore. Cold Spring Harb. Perspect. Biol. 6:a015826. 10.1101/cshperspect.a015826, PMID: PubMed DOI PMC
Chi S. M., Nam D. (2012). WegoLoc: accurate prediction of protein subcellular localization using weighted gene ontology terms. Bioinformatics 28, 1028–1030. 10.1093/bioinformatics/bts062, PMID: PubMed DOI
Cuylen S., Blaukopf C., Politi A. Z., Müller-Reichert T., Neumann B., Poser I., et al. . (2016). Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535, 308–312. 10.1038/nature18610, PMID: PubMed DOI PMC
Cuylen-Haering S., Petrovic M., Hernandez-Armendariz A., Schneider M. W., Samwer M., Blaukopf C., et al. . (2020). Chromosome clustering by Ki-67 excludes cytoplasm during nuclear assembly. Nature 587, 285–290. 10.1038/s41586-020-2672-3, PMID: PubMed DOI PMC
Djeghloul D., Patel B., Kramer H., Dimond A., Whilding C., Brown K., et al. . (2020). Identifying proteins bound to native mitotic ESC chromosomes reveals chromatin repressors are important for compaction. Nat. Commun. 11, 1–15. 10.1038/s41467-020-17823-z, PMID: PubMed DOI PMC
Doležel J., Binarová P., Lucretti S. (1989). Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant. 31, 113–120. 10.1007/BF02907241 DOI
Doležel J., Kubaláková M., Číhalíková J., Suchánková P., Šimková H. (2011). Chromosome analysis and sorting using flow cytometry. Methods Mol. Biol. 701, 221–238. 10.1007/978-1-61737-957-4_12, PMID: PubMed DOI
Doležel J., Sgorbati S., Lucretti S. (1992). Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 85, 625–631. 10.1111/j.1399-3054.1992.tb04764.x DOI
Doležel J., Vrána J., Šafář J., Bartoš J., Kubaláková M., Šimková H. (2012). Chromosomes in the flow to simplify genome analysis. Funct. Integr. Genomics 12, 397–416. 10.1007/s10142-012-0293-0, PMID: PubMed DOI PMC
Festuccia N., Dubois A., Vandormael-Pournin S., Tejeda E. G., Mouren A., Bessonnard S. (2016). Mitotic binding of Esrrb marks key regulatory regions of the pluripotency network. Nat. Cell Biol. 18, 1139–1148. 10.1038/ncb3418, PMID: PubMed DOI
Fierz B., Poirer M. G. (2019). Biophysics of chromatin dynamics. Annu. Rev. Biophys. 48, 321–345. 10.1146/annurev-biophys-070317-032847 PubMed DOI
Franc V., Řehulka P., Medda R., Padiglia A., Floris G., Šebela M. (2013a). Analysis of the glycosylation pattern of plant copper amine oxidases by MALDI-TOF/TOF MS coupled to a manual chromatographic separation of glycans and glycopeptides. Electrophoresis 34, 2357–2367. 10.1002/elps.201200622, PMID: PubMed DOI
Franc V., Řehulka P., Raus M., Stulík J., Novak J., Renfrow M. B., et al. . (2013b). Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing. J. Proteomics 92, 299–312. 10.1016/j.jprot.2013.07.013, PMID: PubMed DOI PMC
Fujimura A., Hayashi Y., Kato K., Kogure Y., Kameyama M., Shimamoto H., et al. . (2020). Identification of a novel nucleolar protein complex required for mitotic chromosome segregation through centromeric accumulation of Aurora B. Nucleic Acids Res. 48, 6583–6596. 10.1093/nar/gkaa449, PMID: PubMed DOI PMC
Ganji M., Shaltiel I. A., Bisht S., Kim E., Kalichava A., Haering C. H., et al. . (2018). Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105. 10.1126/science.aar7831, PMID: PubMed DOI PMC
Gassmann R., Henzing A. J., Earnshaw W. C. (2005). Novel components of human mitotic chromosomes identified by proteomic analysis of the chromosome scaffold fraction. Chromosoma 113, 385–397. 10.1007/s00412-004-0326-0, PMID: PubMed DOI
Ginno P. A., Burger L., Seebacher J., Iesmantavicius V., Schübeler D. (2018). Cell cycle-resolved chromatin proteomics reveals the extent of mitotic preservation of the genomic regulatory landscape. Nat. Commun. 9, 1–12. 10.1038/s41467-018-06007-5, PMID: PubMed DOI PMC
Hara M., Fukagawa T. (2020). Dynamics of kinetochore structure and its regulations during mitotic progression. Cell. Mol. Life Sci. 77, 1–15. 10.1007/s00018-020-03472-4 PubMed DOI PMC
Hayashi Y., Kato K., Kimura K. (2017). The hierarchical structure of the perichromosomal layer comprises Ki67, ribosomal RNAs, and nucleolar proteins. Biochem. Biophys. Res. Commun. 493, 1043–1049. 10.1016/j.bbrc.2017.09.092, PMID: PubMed DOI
Hsiung C. C. S., Morrissey C. S., Udugama M., Frank C. L., Keller C. A., Baek S., et al. . (2015). Genome accessibility is widely preserved and locally modulated during mitosis. Genome Res. 25, 213–225. 10.1101/gr.180646.114, PMID: PubMed DOI PMC
Huang D. W., Sherman B. T., Lempicki R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13. 10.1093/nar/gkn923, PMID: PubMed DOI PMC
International Barley Genome Sequencing Consortium, Mayer K. F. X., Waugh R., Brown J. W. S., Schulman A., Langridge P., et al. . (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716. 10.1038/nature11543, PMID: PubMed DOI
Jasenčáková Z., Meister A., Schubert I. (2001). Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma 110, 83–92. 10.1007/s004120100132, PMID: PubMed DOI
Kalinina N. O., Makarova S., Makhotenko A., Love A. J., Taliansky M. (2018). The multiple functions of the nucleolus in plant development, disease and stress responses. Front. Plant Sci. 9:132. 10.3389/fpls.2018.00132, PMID: PubMed DOI PMC
Kintlová M., Blavet N., Cegan R., Hobza R. (2017). Transcriptome of barley under three different heavy metal stress reaction. Genom. Data 13, 15–17. 10.1016/j.gdata.2017.05.016, PMID: PubMed DOI PMC
Kubaláková M., Macas J., Dolezel J. (1997). Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor. Appl. Genet. 94, 758–763. 10.1007/s001220050475 DOI
Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685. 10.1038/227680a0, PMID: PubMed DOI
Liu Y., Deng Y., Li G., Zhao J. (2013). Replication factor C1 (RFC1) is required for double-strand break repair during meiotic homologous recombination in Arabidopsis. Plant J. 73, 154–165. 10.1111/tpj.12024, PMID: PubMed DOI
Lysák M. A., Číhalíková J., Kubaláková M., Šimková H., Künzel G., Doležel J. (1999). Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.). Chromosom. Res. 7, 431–444. 10.1023/A:1009293628638, PMID: PubMed DOI
Marchler-Bauer A., Bryant S. H. (2004). CD-search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327–W331. 10.1093/nar/gkh454, PMID: PubMed DOI PMC
Marthe C., Kumlehn J., Hensel G. (2015). Barley (Hordeum vulgare L.) transformation using immature embryos. Methods Mol. Biol. 1223, 71–83. 10.1007/978-1-4939-1695-5_6 PubMed DOI
Martínez-Balbás M. A., Dey A., Rabindran S. K., Ozato K., Wu C. (1995). Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83, 29–38. 10.1016/0092-8674(95)90231-7, PMID: PubMed DOI
Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S. O., Wicker T., et al. . (2017). A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433. 10.1038/nature22043, PMID: PubMed DOI
Meier I., Griffis A. H., Groves N. R., Wagner A. (2016). Regulation of nuclear shape and size in plants. Curr. Opin. Cell Biol. 40, 114–123. 10.1016/j.ceb.2016.03.005, PMID: PubMed DOI
Mikulski P., Hohenstatt M. L., Farrona S., Smaczniak C., Stahl Y., Kaufmann K., et al. . (2019). The chromatin-associated protein PWO1 interacts with plant nuclear Lamin-like components to regulate nuclear size. Plant Cell 31, 1141–1154. 10.1105/tpc.18.00663, PMID: PubMed DOI PMC
Montaño-Gutierrez L. F., Ohta S., Kustatscher G., Earnshaw W. C., Rappsilber J. (2017). Nano random forests to mine protein complexes and their relationships in quantitative proteomics data. Mol. Biol. Cell 28, 673–680. 10.1091/mbc.E16-06-0370, PMID: PubMed DOI PMC
Moravcová D., Kahle V., Řehulková H., Chmelík J., Řehulka P. (2009). Short monolithic columns for purification and fractionation of peptide samples for matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis in proteomics. J. Chromatogr. A 1216, 3629–3636. 10.1016/j.chroma.2009.01.075, PMID: PubMed DOI
Morrison C., Henzing A. J., Jensen O. N., Osheroff N., Dodson H., Kandels-Lewis S. E., et al. . (2002). Proteomic analysis of human metaphase chromosomes reveals topoisomerase II alpha as an Aurora B substrate. Nucleic Acids Res. 30, 5318–5327. 10.1093/nar/gkf665, PMID: PubMed DOI PMC
Ohta S., Bukowski-Wills J. C., Sanchez-Pulido L., de Lima Alves F., Wood L., Chen Z., et al. . (2010). The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142, 810–821. 10.1016/j.cell.2010.07.047, PMID: PubMed DOI PMC
Ohta S., Kimura M., Takagi S., Toramoto I., Ishihama Y. (2016b). Identification of mitosis-specific phosphorylation in mitotic chromosome-associated proteins. J. Proteome Res. 15, 3331–3341. 10.1021/acs.jproteome.6b00512, PMID: PubMed DOI
Ohta S., Montaño-Gutierrez L. F., de Lima Alves F., Ogawa H., Toramoto I., Sato N., et al. . (2016a). Proteomics analysis with a nano random Forest approach reveals novel functional interactions regulated by SMC complexes on mitotic chromosomes. Mol. Cell. Proteomics 15, 2802–2818. 10.1074/mcp.m116.057885, PMID: PubMed DOI PMC
Ohta S., Taniguchi T., Sato N., Hamada M., Taniguchi H., Rappsilber J. (2019). Quantitative proteomics of the mitotic chromosome scaffold reveals the association of BAZ1B with chromosomal axes. Mol. Cell. Proteomics 18, 169–181. 10.1074/mcp.RA118.000923, PMID: PubMed DOI PMC
Palozola K. C., Donahue G., Liu H., Grant G. R., Becker J. S., Cote A., et al. . (2017). Mitotic transcription and waves of gene reactivation during mitotic exit. Science 358, 119–122. 10.1126/science.aal4671, PMID: PubMed DOI PMC
Parsons G. G., Spencer C. A. (1997). Mitotic repression of RNA polymerase II transcription is accompanied by release of transcription elongation complexes. Mol. Cell. Biol. 17, 5791–5802. 10.1128/MCB.17.10.5791, PMID: PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., et al. . (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450. 10.1093/nar/gky1106, PMID: PubMed DOI PMC
Pesenti M. E., Prumbaum D., Auckland P., Smith C. M., Faesen A. C., Petrovic A., et al. . (2018). Reconstitution of a 26-subunit human kinetochore reveals cooperative microtubule binding by CENP-OPQUR and NDC80. Mol. Cell 71, 923–939. 10.1016/j.molcel.2018.07.038, PMID: PubMed DOI PMC
Petrovská B., Jeřábková H., Chamrád I., Vrána J., Lenobel R., Uřinovská J., et al. . (2014). Proteomic analysis of barley cell nuclei purified by flow sorting. Cytogenet. Genome Res. 143, 78–86. 10.1159/000365311, PMID: PubMed DOI
Raccaud M., Suter D. M. (2018). Transcription factor retention on mitotic chromosomes: regulatory mechanisms and impact on cell fate decisions. FEBS Lett. 592, 878–887. 10.1002/1873-3468.12828, PMID: PubMed DOI
Rapazote-Flores P., Bayer M., Milne L., Mayer C. D., Fuller J., Guo W., et al. . (2019). BaRTv1. 0: an improved barley reference transcript dataset to determine accurate changes in the barley transcriptome using RNA-seq. BMC Genomics 20:968. 10.1186/s12864-019-6243-7, PMID: PubMed DOI PMC
Rappsilber J., Mann M., Ishihama Y. (2007). Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using stagetips. Nat. Protoc. 2, 1896–1906. 10.1038/nprot.2007.261, PMID: PubMed DOI
Reichow S. L., Hamma T., Ferré-D'Amaré A. R., Varani G. (2007). The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res. 35, 1452–1464. 10.1093/nar/gkl1172, PMID: PubMed DOI PMC
Samejima I., Earnshaw W. C. (2018). Isolation of mitotic chromosomes from vertebrate cells and characterization of their proteome by mass spectrometry. Methods Cell Biol. 144, 329–348. 10.1016/bs.mcb.2018.03.021, PMID: PubMed DOI
Sarnowski T. J., Ríos G., Jásik J., Świeżewski S., Kaczanowski S., Li Y., et al. . (2005). SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development. Plant Cell 17, 2454–2472. 10.1105/tpc.105.031203, PMID: PubMed DOI PMC
Šebela M., Štosová T., Havliš J., Wielsch N., Thomas H., Zdráhal Z., et al. . (2006). Thermostable trypsin conjugates for high-throughput proteomics: synthesis and performance evaluation. Proteomics 6, 2959–2963. 10.1002/pmic.200500576, PMID: PubMed DOI
Shevchenko A., Tomas H., Havliš J., Olsen J. V., Mann M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860. 10.1038/nprot.2006.468, PMID: PubMed DOI
Sirri V., Jourdan N., Hernandez-Verdun D., Roussel P. (2016). Sharing of mitotic pre-ribosomal particles between daughter cells. J. Cell Sci. 129, 1592–1604. 10.1242/jcs.180521, PMID: PubMed DOI
Skibbens R. V. (2019). Condensins and cohesins – one of these things is not like the other! J. Cell Sci. 132:jcs220491. 10.1242/jcs.220491, PMID: PubMed DOI PMC
Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., et al. . (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85. 10.1016/0003-2697(85)90442-7, PMID: PubMed DOI
Sperschneider J., Catanzariti A. M., DeBoer K., Petre B., Gardiner D. M., Singh K. B., et al. . (2017). LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Sci. Rep. 7:44598. 10.1038/srep44598, PMID: PubMed DOI PMC
Stenström L., Mahdessian D., Gnann C., Cesnik A. J., Ouyang W., Leonetti M. D., et al. . (2020). Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder. Mol. Syst. Biol. 16:e9469. 10.15252/msb.20209469, PMID: PubMed DOI PMC
Takagi M., Matsuoka Y., Kurihara T., Yoneda Y. (1999). Chmadrin: a novel Ki-67 antigen-related perichromosomal protein possibly implicated in higher order chromatin structure. J. Cell Sci. 112, 2463–2472. 10.1242/jcs.112.15.2463, PMID: PubMed DOI
Takagi M., Natsume T., Kanemaki M. T., Imamoto N. (2016). Perichromosomal protein Ki67 supports mitotic chromosome architecture. Genes Cells 21, 1113–1124. 10.1111/gtc.12420, PMID: PubMed DOI
Takata H., Uchiyama S., Nakamura N., Nakashima S., Kobayashi S., Sone T., et al. . (2007). A comparative proteome analysis of human metaphase chromosomes isolated from two different cell lines reveals a set of conserved chromosome-associated proteins. Genes Cells 12, 269–284. 10.1111/j.1365-2443.2007.01051.x, PMID: PubMed DOI
Tan F., Li G., Chitteti B. R., Peng Z. (2007). Proteome and phosphoproteome analysis of chromatin associated proteins in rice (Oryza sativa). Proteomics 7, 4511–4527. 10.1002/pmic.200700580, PMID: PubMed DOI
Tiang C. L., He Y., Pawlowski W. P. (2012). Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants. Plant Physiol. 158, 26–34. 10.1104/pp.111.187161, PMID: PubMed DOI PMC
Tuteja N., Tran N. Q., Dang H. Q., Tuteja R. (2011). Plant MCM proteins: role in DNA replication and beyond. Plant Mol. Biol. 77, 537–545. 10.1007/s11103-011-9836-3, PMID: PubMed DOI
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., et al. . (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. 10.1038/nmeth.3901, PMID: PubMed DOI
Uchiyama S., Kobayashi S., Takata H., Ishihara T., Hori N., Higashi T., et al. . (2005). Proteome analysis of human metaphase chromosomes. J. Biol. Chem. 280, 16994–17004. 10.1074/jbc.M412774200, PMID: PubMed DOI
Wisniewski J. R., Gaugaz F. Z. (2015). Fast and sensitive total protein and peptide assays for proteomic analysis. Anal. Chem. 87, 4110–4116. 10.1021/ac504689z, PMID: PubMed DOI
Yano A., Kodama Y., Koike A., Shinya T., Kim H. J., Matsumoto M. (2006). Interaction between methyl CpG-binding protein and ran GTPase during cell division in tobacco cultured cells. Ann. Bot. 98, 1179–1187. 10.1093/aob/mcl211, PMID: PubMed DOI PMC
Yu C. S., Cheng C. W., Su W. C., Chang K. C., Huang S. W., Hwang J. K., et al. . (2014). CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One 9:e99368. 10.1371/journal.pone.0099368, PMID: PubMed DOI PMC
Zaidi S. S. E. A., Mukhtar M. S., Mansoor S. (2018). Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol. 36, 898–906. 10.1016/j.tibtech.2018.04.005, PMID: PubMed DOI
Zeng Z., Jiang J. (2016). Isolation and proteomics analysis of barley centromeric chromatin using PICh. J. Proteome Res. 15, 1875–1882. 10.1021/acs.jproteome.6b00063, PMID: PubMed DOI
Zwyrtková J., Šimková H., Doležel J. (2020). Chromosome genomics uncovers plant genome organization and function. Biotechnol. Adv. 46:107659. 10.1016/j.biotechadv.2020.107659, PMID: PubMed DOI
Zybailov B., Mosley A. L., Sardiu M. E., Coleman M. K., Florens L., Washburn M. P. (2006). Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 5, 2339–2347. 10.1021/pr060161n, PMID: PubMed DOI
Flow Cytometric Analysis and Sorting of Plant Chromosomes