FIBRILLARIN 1 Dotaz Zobrazit nápovědu
Nucleoli are formed on the basis of ribosomal DNA (rDNA) clusters called Nucleolus Organizer Regions (NORs). Each NOR contains multiple genes coding for RNAs of the ribosomal particles. The prominent components of the nucleolar ultrastructure, fibrillar centers (FC) and dense fibrillar components (DFC), together compose FC/DFC units. These units are centers of rDNA transcription by RNA polymerase I (pol I), as well as the early processing events, in which an essential role belongs to fibrillarin. Each FC/DFC unit probably corresponds to a single transcriptionally active gene. In this work, we transfected human-derived cells with GFP-RPA43 (subunit of pol I) and RFP-fibrillarin. Following changes of the fluorescent signals in individual FC/DFC units, we found two kinds of kinetics: 1) the rapid fluctuations with periods of 2-3 min, when the pol I and fibrillarin signals oscillated in anti-phase manner, and the intensities of pol I in the neighboring FC/DFC units did not correlate. 2) fluctuations with periods of 10 to 60 min, in which pol I and fibrillarin signals measured in the same unit did not correlate, but pol I signals in the units belonging to different nucleoli were synchronized. Our data indicate that a complex pulsing activity of transcription as well as early processing is common for ribosomal genes.
Heterochromatin protein 1 (HP1), which binds to sites of histone H3 lysine 9 (H3K9) methylation, is primarily responsible for gene silencing and the formation of heterochromatin. We observed that HP1 beta is located in both the chromocenters and fibrillarin-positive nucleoli interiors. However, HP1 alpha and HP1 gamma occupied fibrillarin-positive compartments to a lesser extent, corresponding to the distinct levels of HP1 subtypes at the promoter of rDNA genes. Deficiency of histone methyltransferases SUV39h and/or inhibition of histone deacetylases (HDACi) decreased HP1 beta and H3K9 trimethylation at chromocenters, but not in fibrillarin-positive regions that co-localized with RNA polymerase I. Similarly, SUV39h- and HDACi-dependent nucleolar rearrangement and inhibition of rDNA transcription did not affect the association between HP1 beta and fibrillarin. Moreover, the presence of HP1 beta in nucleoli is likely connected with transcription of ribosomal genes and with the role of fibrillarin in nucleolar processes.
- MeSH
- buněčné jadérko metabolismus MeSH
- chromozomální proteiny, nehistonové metabolismus MeSH
- fibroblasty metabolismus MeSH
- kultivované buňky MeSH
- methyltransferasy metabolismus MeSH
- myši MeSH
- represorové proteiny metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Pre-implantation embryos derived by in vitro fertilization differ in their developmental potential from embryos obtained in vivo. In order to characterize changes in gene expression profiles caused by in vitro culture environment, we employed microarray constructed from bovine oocyte and preimplantation embryo-specific cDNAs (BlueChip, Université Laval, Québec). The analysis revealed changes in the level of 134 transcripts between in vitro derived (cultured in COOK BVC/BVB media) and in vivo derived 4-cell stage embryos and 97 transcripts were differentially expressed between 8-cell stage in vitro and in vivo embryos. The expression profiles of 7 selected transcripts (BUB3, CUL1, FBL, NOLC1, PCAF, GABPA and CNOT4) were studied in detail. We have identified a switch from Cullin 1-like transcript variant 1 to Cullin 1 transcript variant 3 (UniGene IDs BT.36789 and BT.6490, respectively) expressions around the time of bovine major gene activation (8-cell stage). New fibrillarin protein was detected by immunofluorescence already in early 8-cell stage and this detection correlated with increased level of fibrillarin mRNA. The qRT-PCR analysis revealed significant differences in the level of BUB3, NOLC1, PCAF, GABPA and CNOT4 gene transcripts between in vivo derived (IVD) and in vitro produced (IVP) embryos in late 8-cell stage. The combination of these genes represents a suitable tool for addressing questions concerning normal IVD embryo development and can be potentially useful as a marker of embryo quality in future attempts to optimize in vitro culture conditions.
- MeSH
- blastocysta metabolismus MeSH
- embryonální vývoj genetika MeSH
- kulinové proteiny genetika metabolismus MeSH
- kultivace embrya veterinární MeSH
- kultivační média MeSH
- molekulární sekvence - údaje MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- skot MeSH
- stanovení celkové genové exprese MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We studied the effect of ellagic acid (EA) on the morphology of nucleoli and on the pattern of major proteins of the nucleolus. After EA treatment of HeLa cells, we observed condensation of nucleoli as documented by the pattern of argyrophilic nucleolar organizer regions (AgNORs). EA also induced condensation of RPA194-positive nucleolar regions, but no morphological changes were observed in nucleolar compartments positive for UBF1/2 proteins or fibrillarin. Studied morphological changes induced by EA were compared with the morphology of control, non-treated cells and with pronounced condensation of all nucleolar domains caused by actinomycin D (ACT-D) treatment. Similarly as ACT-D, but in a lesser extent, EA induced an increased number of 53BP1-positive DNA lesions. However, the main marker of DNA lesions, γH2AX, was not accumulated in body-like nuclear structures. An increased level of γH2AX was found by immunofluorescence and Western blots only after EA treatment. Intriguingly, the levels of fibrillarin, UBF1/2 and γH2AX were increased at the promoters of ribosomal genes, while 53BP1 and CARM1 levels were decreased by EA treatment at these genomic regions. In the entire genome, EA reduced H3R17 dimethylation. Taken together, ellagic acid is capable of significantly changing the nucleolar morphology and protein levels inside the nucleolus.
- MeSH
- buněčné dělení účinky léků MeSH
- buněčné jadérko chemie účinky léků ultrastruktura MeSH
- chromozomální proteiny, nehistonové analýza MeSH
- daktinomycin farmakologie MeSH
- epigeneze genetická účinky léků MeSH
- G2 fáze účinky léků MeSH
- guanylátcyklasa analýza antagonisté a inhibitory MeSH
- HeLa buňky chemie účinky léků MeSH
- histony analýza metabolismus MeSH
- intracelulární signální peptidy a proteiny analýza MeSH
- kyselina ellagová farmakologie MeSH
- lidé MeSH
- metylace MeSH
- nádorové proteiny analýza MeSH
- organizátor jadérka chemie účinky léků ultrastruktura MeSH
- poškození DNA MeSH
- posttranslační úpravy proteinů účinky léků MeSH
- promotorové oblasti (genetika) MeSH
- ribozomální DNA účinky léků genetika MeSH
- RNA-polymerasa I analýza MeSH
- signální adaptorové proteiny CARD analýza antagonisté a inhibitory MeSH
- transkripční iniciační komplex Pol1 - proteiny analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
To maintain growth and division, cells require a large-scale production of rRNAs which occurs in the nucleolus. Recently, we have shown the interaction of nucleolar phosphatidylinositol 4,5-bisphosphate (PIP2) with proteins involved in rRNA transcription and processing, namely RNA polymerase I (Pol I), UBF, and fibrillarin. Here we extend the study by investigating transcription-related localization of PIP2 in regards to transcription and processing complexes of Pol I. To achieve this, we used either physiological inhibition of transcription during mitosis or inhibition by treatment the cells with actinomycin D (AMD) or 5,6-dichloro-1β-d-ribofuranosyl-benzimidazole (DRB). We show that PIP2 is associated with Pol I subunits and UBF in a transcription-independent manner. On the other hand, PIP2/fibrillarin colocalization is dependent on the production of rRNA. These results indicate that PIP2 is required not only during rRNA production and biogenesis, as we have shown before, but also plays a structural role as an anchor for the Pol I pre-initiation complex during the cell cycle. We suggest that throughout mitosis, PIP2 together with UBF is involved in forming and maintaining the core platform of the rDNA helix structure. Thus we introduce PIP2 as a novel component of the NOR complex, which is further engaged in the renewed rRNA synthesis upon exit from mitosis.
- MeSH
- buněčné jadérko metabolismus MeSH
- buněčný cyklus MeSH
- chromozomální proteiny, nehistonové metabolismus MeSH
- genetická transkripce MeSH
- HeLa buňky MeSH
- lidé MeSH
- mitóza MeSH
- nádorové buněčné linie MeSH
- organizátor jadérka metabolismus MeSH
- rekombinantní proteiny metabolismus MeSH
- ribozomální DNA MeSH
- RNA ribozomální MeSH
- RNA-polymerasa I metabolismus MeSH
- transkripční iniciační komplex Pol1 - proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In the Caenorhabditis elegans nematode, the oocyte nucleolus disappears prior to fertilization. We have now investigated the re-formation of the nucleolus in the early embryo of this model organism by immunostaining for fibrillarin and DAO-5, a putative NOLC1/Nopp140 homolog involved in ribosome assembly. We find that labeled nucleoli first appear in somatic cells at around the 8-cell stage, at a time when transcription of the embryonic genome begins. Quantitative analysis of radial positioning showed the nucleolus to be localized at the nuclear periphery in a majority of early embryonic nuclei. At the ultrastructural level, the embryonic nucleolus appears to be composed of a relatively homogenous core surrounded by a crescent-shaped granular structure. Prior to embryonic genome activation, fibrillarin and DAO-5 staining is seen in numerous small nucleoplasmic foci. This staining pattern persists in the germline up to the ∼100-cell stage, until the P4 germ cell divides to give rise to the Z2/Z3 primordial germ cells and embryonic transcription is activated in this lineage. In the ncl-1 mutant, which is characterized by increased transcription of rDNA, DAO-5-labeled nucleoli are already present at the 2-cell stage. Our results suggest a link between the activation of transcription and the initial formation of nucleoli in the C. elegans embryo.
- MeSH
- buněčné jadérko genetika metabolismus ultrastruktura MeSH
- Caenorhabditis elegans embryologie genetika ultrastruktura MeSH
- embryo nesavčí embryologie ultrastruktura MeSH
- genetická transkripce fyziologie MeSH
- genom u helmintů fyziologie MeSH
- jaderné proteiny genetika metabolismus MeSH
- proteiny Caenorhabditis elegans genetika metabolismus MeSH
- vývojová regulace genové exprese fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
RNA polymerase I (Pol I) transcription is essential for the cell cycle, growth and protein synthesis in eukaryotes. In the present study, we found that phosphatidylinositol 4,5-bisphosphate (PIP2) is a part of the protein complex on the active ribosomal promoter during transcription. PIP2 makes a complex with Pol I and the Pol I transcription factor UBF in the nucleolus. PIP2 depletion reduces Pol I transcription, which can be rescued by the addition of exogenous PIP2. In addition, PIP2 also binds directly to the pre-rRNA processing factor fibrillarin (Fib), and co-localizes with nascent transcripts in the nucleolus. PIP2 binding to UBF and Fib modulates their binding to DNA and RNA, respectively. In conclusion, PIP2 interacts with a subset of Pol I transcription machinery, and promotes Pol I transcription.
- MeSH
- buněčné jadérko genetika metabolismus MeSH
- chromozomální proteiny, nehistonové genetika metabolismus MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- fosfatidylinositol-4,5-difosfát genetika metabolismus MeSH
- genetická transkripce genetika MeSH
- HeLa buňky MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- prekurzory RNA genetika metabolismus MeSH
- promotorové oblasti (genetika) genetika MeSH
- RNA-polymerasa I genetika metabolismus MeSH
- transkripční iniciační komplex Pol1 - proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The nucleolus is a nuclear compartment that plays an important role in ribosome biogenesis. Some structural features and epigenetic patterns are shared between nucleolar and non-nucleolar compartments. For example, the location of transcriptionally active mRNA on extended chromatin loop species is similar to that observed for transcriptionally active ribosomal DNA (rDNA) genes on so-called Christmas tree branches. Similarly, nucleolus organizer region-bearing chromosomes located a distance from the nucleolus extend chromatin fibers into the nucleolar compartment. Specific epigenetic events, such as histone acetylation and methylation and DNA methylation, also regulate transcription of both rRNA- and mRNA-encoding loci. Here, we review the epigenetic mechanisms and structural features that regulate transcription of ribosomal and mRNA genes. We focus on similarities in epigenetic and structural regulation of chromatin in nucleoli and the surrounding non-nucleolar region and discuss the role of proteins, such as heterochromatin protein 1, fibrillarin, nucleolin, and upstream binding factor, in rRNA synthesis and processing.
- MeSH
- buněčné jadérko genetika metabolismus ultrastruktura MeSH
- chromatin genetika ultrastruktura MeSH
- epigeneze genetická MeSH
- genetická transkripce MeSH
- geny rRNA MeSH
- histony metabolismus MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- ribozomální DNA genetika MeSH
- ribozomy genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- srovnávací studie MeSH
BACKGROUND: The repair of spontaneous and induced DNA lesions is a multistep process. Depending on the type of injury, damaged DNA is recognized by many proteins specifically involved in distinct DNA repair pathways. RESULTS: We analyzed the DNA-damage response after ultraviolet A (UVA) and γ irradiation of mouse embryonic fibroblasts and focused on upstream binding factor 1 (UBF1), a key protein in the regulation of ribosomal gene transcription. We found that UBF1, but not nucleolar proteins RPA194, TCOF, or fibrillarin, was recruited to UVA-irradiated chromatin concurrently with an increase in heterochromatin protein 1β (HP1β) level. Moreover, Förster Resonance Energy Transfer (FRET) confirmed interaction between UBF1 and HP1β that was dependent on a functional chromo shadow domain of HP1β. Thus, overexpression of HP1β with a deleted chromo shadow domain had a dominant-negative effect on UBF1 recruitment to UVA-damaged chromatin. Transcription factor UBF1 also interacted directly with DNA inside the nucleolus but no interaction of UBF1 and DNA was confirmed outside the nucleolus, where UBF1 recruitment to DNA lesions appeared simultaneously with cyclobutane pyrimidine dimers; this occurrence was cell-cycle-independent. CONCLUSIONS: We propose that the simultaneous presence and interaction of UBF1 and HP1β at DNA lesions is activated by the presence of cyclobutane pyrimidine dimers and mediated by the chromo shadow domain of HP1β. This might have functional significance for nucleotide excision repair.
- Publikační typ
- časopisecké články MeSH
The family of heterochromatin protein 1 (HP1) isoforms is essential for chromatin packaging, regulation of gene expression, and repair of damaged DNA. Here we document that γ-radiation reduced the number of HP1α-positive foci, but not HP1β and HP1γ foci, located in the vicinity of the fibrillarin-positive region of the nucleolus. The additional analysis confirmed that γ-radiation has the ability to significantly decrease the level of HP1α in rDNA promoter and rDNA encoding 28S rRNA. By mass spectrometry, we showed that treatment by γ-rays enhanced the HP1β serine 88 phosphorylation (S88ph), but other analyzed modifications of HP1β, including S161ph/Y163ph, S171ph, and S174ph, were not changed in cells exposed to γ-rays or treated by the HDAC inhibitor (HDACi). Interestingly, a combination of HDACi and γ-radiation increased the level of HP1α and HP1γ. The level of HP1β remained identical before and after the HDACi/γ-rays treatment, but HDACi strengthened HP1β interaction with the KRAB-associated protein 1 (KAP1) protein. Conversely, HP1γ did not interact with KAP1, although approximately 40% of HP1γ foci co-localized with accumulated KAP1. Especially HP1γ foci at the periphery of nucleoli were mostly absent of KAP1. Together, DNA damage changed the morphology, levels, and interaction properties of HP1 isoforms. Also, γ-irradiation-induced hyperphosphorylation of the HP1β protein; thus, HP1β-S88ph could be considered as an important marker of DNA damage.
- MeSH
- buněčné jadérko metabolismus MeSH
- chromozomální proteiny, nehistonové metabolismus MeSH
- fosforylace MeSH
- HeLa buňky MeSH
- lidé MeSH
- nádorové buňky kultivované MeSH
- optické zobrazování MeSH
- poškození DNA MeSH
- rezonanční přenos fluorescenční energie MeSH
- serin metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH