UNcleProt (Universal Nuclear Protein database of barley): The first nuclear protein database that distinguishes proteins from different phases of the cell cycle
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
    PubMed
          
           27813701
           
          
          
    PubMed Central
          
           PMC5287097
           
          
          
    DOI
          
           10.1080/19491034.2016.1255391
           
          
          
  
    Knihovny.cz E-zdroje
    
  
              
      
- Klíčová slova
- barley, cell cycle, database, flow-cytometry, localization, mass spectrometry, nuclear proteome, nucleus,
- MeSH
- buněčný cyklus * MeSH
- data mining MeSH
- databáze proteinů * MeSH
- jaderné proteiny klasifikace metabolismus MeSH
- ječmen (rod) cytologie MeSH
- rostlinné proteiny klasifikace metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- jaderné proteiny MeSH
- rostlinné proteiny MeSH
Proteins are the most abundant component of the cell nucleus, where they perform a plethora of functions, including the assembly of long DNA molecules into condensed chromatin, DNA replication and repair, regulation of gene expression, synthesis of RNA molecules and their modification. Proteins are important components of nuclear bodies and are involved in the maintenance of the nuclear architecture, transport across the nuclear envelope and cell division. Given their importance, the current poor knowledge of plant nuclear proteins and their dynamics during the cell's life and division is striking. Several factors hamper the analysis of the plant nuclear proteome, but the most critical seems to be the contamination of nuclei by cytosolic material during their isolation. With the availability of an efficient protocol for the purification of plant nuclei, based on flow cytometric sorting, contamination by cytoplasmic remnants can be minimized. Moreover, flow cytometry allows the separation of nuclei in different stages of the cell cycle (G1, S, and G2). This strategy has led to the identification of large number of nuclear proteins from barley (Hordeum vulgare), thus triggering the creation of a dedicated database called UNcleProt, http://barley.gambrinus.ueb.cas.cz/ .
Zobrazit více v PubMed
Guo T, Fang Y. Functional organization and dynamics of the cell nucleus. Front Plant Sci 2014; 5:378; PMID:25161658 PubMed PMC
Petrovská B, Šebela M, Doležel J. Inside a plant nucleus: discovering the proteins. J Exp Bot 2015; 66:1627-40; http://dx.doi.org/10.1093/jxb/erv041 PubMed DOI
Sutherland HGE, Mumford GK, Newton K, Ford LV, Farrall R, Dellaire G, Cáceres JF, Bickmore WA. Large-scale identification of mammalian proteins localized to nuclear sub-compartments. Hum Mol Genet 2001; 10:1995-2011; PMID:11555636; http://dx.doi.org/10.1093/hmg/10.18.1995 PubMed DOI
Wente SR, Rout MP. The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol 2010; 2:a000562; PMID:20630994; http://dx.doi.org/10.1101/cshperspect.a000562 PubMed DOI PMC
Aebi U, Cohn J, Buhle L, Gerace L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature 1986; 323:560-4; PMID:3762708; http://dx.doi.org/10.1038/323560a0 PubMed DOI
Worman HJ, Gundersen GG. Here come the SUNs: a nucleocytoskeletal missing link. Trends Cell Biol 2006; 16:67-9; PMID:16406617; http://dx.doi.org/10.1016/j.tcb.2005.12.006 PubMed DOI
Graumann K, Bass HW, Parry G. SUNrises on the international plant nucleus consortium. Nucleus 2013; 4:3-7; PMID:23324458; http://dx.doi.org/10.4161/nucl.23385 PubMed DOI PMC
Bae MS, Cho EJ, Choi EY, Park OK. Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 2003; 36:652-63; PMID:14617066; http://dx.doi.org/10.1046/j.1365-313X.2003.01907.x PubMed DOI
Calikowski TT, Meulia T, Meier I. A proteomic study of the Arabidopsis nuclear matrix. J Cell Biochem 2003; 90:361-78; PMID:14505352; http://dx.doi.org/10.1002/jcb.10624 PubMed DOI
Bigeard J, Rayapuram N, Pflieger D, Hirt H. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. Proteomics 2014; 14:2127-40; PMID:24889195; http://dx.doi.org/10.1002/pmic.201400073 PubMed DOI
Jones AME, MacLean D, Studholme DJ, Serna-Sanz A, Andreasson E, Rathjen JP, Peck SC. Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana. J Proteomics 2009; 72:439-51; PMID:19245862; http://dx.doi.org/10.1016/j.jprot.2009.02.004 PubMed DOI
Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JWS, Shaw PJ. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 2005; 16:260-9; PMID:15496452; http://dx.doi.org/10.1091/mbc.E04-09-0791 PubMed DOI PMC
Aki T, Yanagisawa S. Application of rice nuclear proteome analysis to the identification of evolutionarily conserved and glucose-responsive nuclear proteins. J Proteome Res 2009; 8:3912-24; PMID:19621931; http://dx.doi.org/10.1021/pr900187e PubMed DOI
Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S. Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 2009; 8:1579-98; PMID:19321431; http://dx.doi.org/10.1074/mcp.M800601-MCP200 PubMed DOI PMC
Jaiswal DK, Ray D, Choudhary MK, Subba P, Kumar A, Verma J, Kumar R, Datta A, Chakraborty S, Chakraborty N. Comparative proteomics of dehydration response in the rice nucleus: New insights into the molecular basis of genotype-specific adaptation. Proteomics 2013; 13:3478-97; PMID:24133045; http://dx.doi.org/10.1002/pmic.201300284 PubMed DOI
Khan MMK, Komatsu S. Rice proteomics: recent developments and analysis of nuclear proteins. Phytochemistry 2004; 65:1671-81; PMID:15276429; http://dx.doi.org/10.1016/j.phytochem.2004.04.012 PubMed DOI
Li G, Nallamilli BRR, Tan F, Peng Z. Removal of high-abundance proteins for nuclear subproteome studies in rice (Oryza sativa) endosperm. Electrophoresis 2008; 29:604-17; PMID:18203134; http://dx.doi.org/10.1002/elps.200700412 PubMed DOI
Mujahid H, Tan F, Zhang J, Nallamilli BRR, Pendarvis K, Peng Z. Nuclear proteome response to cell wall removal in rice (Oryza sativa). Proteome Sci 2013; 11:26; PMID:23777608; http://dx.doi.org/10.1186/1477-5956-11-26 PubMed DOI PMC
Tan F, Li G, Chitteti BR, Peng Z. Proteome and phosphoproteome analysis of chromatin associated proteins in rice (Oryza sativa). Proteomics 2007; 7:4511-27; PMID:18022940; http://dx.doi.org/10.1002/pmic.200700580 PubMed DOI
Lee BJ, Kwon SJ, Kim SK, Kim KJ, Park CJ, Kim YJ, Park OK, Paek KH. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis. Biochem Biophys Res Commun 2006; 351:405-11; PMID:17070775; http://dx.doi.org/10.1016/j.bbrc.2006.10.071 PubMed DOI
Kumar R, Kumar A, Subba P, Gayali S, Barua P, Chakraborty S, Chakraborty N. Nuclear phosphoproteome of developing chickpea seedlings (Cicer arietinum L.) and protein-kinase interaction network. J Proteomics 2014; 105:58-73; PMID:24747304; http://dx.doi.org/10.1016/j.jprot.2014.04.002 PubMed DOI
Pandey A, Choudhary MK, Bhushan D, Chattopadhyay A, Chakraborty S, Datta A, Chakraborty N. The Nuclear proteome of chickpea (Cicer arietinum L.) reveals predicted and unexpected proteins. J Proteome Res 2006; 5:3301-11; PMID:17137331; http://dx.doi.org/10.1021/pr060147a PubMed DOI
Pandey A, Chakraborty S, Datta A, Chakraborty N. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L). Mol Cell Proteomics 2008; 7:88-107; PMID:17921517; http://dx.doi.org/10.1074/mcp.M700314-MCP200 PubMed DOI
Subba P, Kumar R, Gayali S, Shekhar S, Parveen S, Pandey A, Datta A, Chakraborty S, Chakraborty N. Characterisation of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics 2013; 13:1973-92; PMID:23798506; http://dx.doi.org/10.1002/pmic.201200380 PubMed DOI
Repetto O, Rogniaux H, Firnhaber C, Zuber H, Küster H, Larré C, Thompson R, Gallardo K. Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling. Plant J 2008; 56:398-410; PMID:18643982; http://dx.doi.org/10.1111/j.1365-313X.2008.03610.x PubMed DOI
Casati P, Campi M, Chu F, Suzuki N, Maltby D, Guan S, Burlingame AL, Walbot V. Histone acetylation and chromatin remodeling are required for UV-B–dependent transcriptional activation of regulated genes in maize. Plant Cell 2008; 20:827-42; PMID:18398050; http://dx.doi.org/10.1105/tpc.107.056457 PubMed DOI PMC
Guo B, Chen Y, Li C, Wang T, Wang R, Wang B, Hu S, Du X, Xing H, Song X, et al.. Maize (Zea mays L.) seedling leaf nuclear proteome and differentially expressed proteins between a hybrid and its parental lines. Proteomics 2014; 14:1071-87; PMID:24677780; http://dx.doi.org/10.1002/pmic.201300147 PubMed DOI
Abdalla KO, Rafudeen MS. Analysis of the nuclear proteome of the resurrection plant Xerophyta viscosa in response to dehydration stress using iTRAQ with 2D LC and tandem mass spectrometry. J Proteomics 2012; 75:2361-74; PMID:22361341; http://dx.doi.org/10.1016/j.jprot.2012.02.006 PubMed DOI
Abdalla KO, Baker B, Rafudeen MS. Proteomic analysis of nuclear proteins during dehydration of the resurrection plant Xerophyta viscosa. Plant Growth Regul 2010; 62:279-92; http://dx.doi.org/10.1007/s10725-010-9497-2 DOI
Cooper B, Campbell KB, Feng J, Garrett WM, Frederick R. Nuclear proteomic changes linked to soybean rust resistance. Mol Biosyst 2011; 7:773-83; PMID:21132161; http://dx.doi.org/10.1039/C0MB00171F PubMed DOI
Bancel E, Bonnot T, Davanture M, Branlard G, Zivy M, Martre P. Proteomic approach to identify nuclear proteins in wheat grain. J Proteome Res 2015; 14:4432-9; PMID:26228564; http://dx.doi.org/10.1021/acs.jproteome.5b00446 PubMed DOI
Bonnot T, Bancel E, Chambon C, Boudet J, Branlard G, Martre P. Changes in the nuclear proteome of developing wheat (Triticum aestivum L.) grain. Front Plant Sci 2015; 6:905; PMID:26579155; http://dx.doi.org/10.3389/fpls.2015.00905 PubMed DOI PMC
Petrovská B, Jerábková H, Chamrád I, Vrána J, Lenobel R, Urinovská J, Šebela M, Doležel J. Proteomic analysis of barley cell nuclei purified by flow sorting. Cytogenet Genome Res 2014; 143:78-86; http://dx.doi.org/10.1159/000365311 PubMed DOI
International Barley Genome Sequencing Consortium A physical, genetic and functional sequence assembly of the barley genome. Nature 2012; 491:711-6; PMID:23075845 PubMed
Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389-402; PMID:9254694; http://dx.doi.org/10.1093/nar/25.17.3389 PubMed DOI PMC
Pieper U, Eswar N, Braberg H, Madhusudhan MS, Davis FP, Stuart AC, Mirkovic N, Rossi A, Marti-Renom MA, Fiser A. et al. MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 2004; 32:D217-D222; PMID:14681398; http://dx.doi.org/10.1093/nar/gkh095 PubMed DOI PMC
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, et al.. CDD: NCBI's conserved domain database. Nucleic Acids Res 2015; 43:D222-226; PMID:25414356; http://dx.doi.org/10.1093/nar/gku1221 PubMed DOI PMC
Xiong E, Zheng C, Wu X, Wang W. Protein subcellular location: The gap between prediction and experimentation. Plant Mol Biol Rep 2015; 34:52-61; http://dx.doi.org/10.1007/s11105-015-0898-2 DOI
Chou KC, Shen HB. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 2010; 5:e11335. PubMed PMC
Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins 2006; 64:643-51; PMID:16752418; http://dx.doi.org/10.1002/prot.21018 PubMed DOI
Shen HB, Chou KC. Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Eng Des Sel 2007; 20:561-7; PMID:17993650; http://dx.doi.org/10.1093/protein/gzm057 PubMed DOI
Lysák MA, Číhalíková J, Kubaláková M, Šimková H, Künzel G, Doležel J. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L). Chromosome Res 1999; 7:431-44; http://dx.doi.org/10.1023/A:1009293628638 PubMed DOI
Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA, Doležel J. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L). Genetics 2000; 156:2033-41 PubMed PMC
Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA. High-throughput Agrobacterium-mediated barley transformation. Plant Methods 2008; 4:22; PMID:18822125; http://dx.doi.org/10.1186/1746-4811-4-22 PubMed DOI PMC
Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, Maluszynski M. TILLING - a shortcut in functional genomics. J Appl Genet 2011; 52:371-90; PMID:21912935; http://dx.doi.org/10.1007/s13353-011-0061-1 PubMed DOI PMC
Bennett MD, Smith JB. Nuclear DNA Amounts in Angiosperms. Philos Trans R Soc Lond, B, Biol Sci 1976; 274:227-74; PMID:6977; http://dx.doi.org/10.1098/rstb.1976.0044 PubMed DOI
Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, et al.. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 2011; 23:1249-63; PMID:21467582; http://dx.doi.org/10.1105/tpc.110.082537 PubMed DOI PMC
Mayer KFX, Waugh R, Brown JWS, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, et al.. A physical, genetic and functional sequence assembly of the barley genome. Nature 2012; 491:711-6; PMID:23075845 PubMed
Luc PV, Tempst P. PINdb: a database of nuclear protein complexes from human and yeast. Bioinformatics 2004; 20:1413-5; PMID:15087322; http://dx.doi.org/10.1093/bioinformatics/bth114 PubMed DOI
Bickmore WA, Sutherland HGE. Addressing protein localization within the nucleus. EMBO J 2002; 21:1248-54; PMID:11889031; http://dx.doi.org/10.1093/emboj/21.6.1248 PubMed DOI PMC
Dellaire G, Farrall R, Bickmore WA. The Nuclear Protein Database (NPD): sub-nuclear localisation and functional annotation of the nuclear proteome. Nucleic Acids Res 2003; 31:328-30; PMID:12520015; http://dx.doi.org/10.1093/nar/gkg018 PubMed DOI PMC
Pijnappel WP, Kolkman A, Baltissen MP, Heck A Jr, Timmers HM. Quantitative mass spectrometry of TATA binding protein-containing complexes and subunit phosphorylations during the cell cycle. Proteome Sci 2009; 7:46; PMID:20034391; http://dx.doi.org/10.1186/1477-5956-7-46 PubMed DOI PMC
Tenga MJ, Lazar IM. Proteomic study reveals a functional network of cancer markers in the G1-Stage of the breast cancer cell cycle. BMC Cancer 2014; 14:710; PMID: 25252636; http://dx.doi.org/10.1186/1471-2407-14-710 PubMed DOI PMC
Farkash-Amar S, Eden E, Cohen A, Geva-Zatorsky N, Cohen L, Milo R, Sigal A, Danon T, Alon U. Dynamic proteomics of human protein level and localization across the cell cycle. PLoS One 2012; 7:e48722; PMID:23144944; http://dx.doi.org/10.1371/journal.pone.0048722 PubMed DOI PMC
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, et al.. CDD: NCBI's conserved domain database. Nucleic Acids Res 2015; 43:D222-226; PMID:25414356; http://dx.doi.org/10.1093/nar/gku1221 PubMed DOI PMC
McCarthy FM, Wang N, Magee GB, Nanduri B, Lawrence ML, Camon EB, Barrell DG, Hill DP, Dolan ME, Williams WP, et al.. AgBase: a functional genomics resource for agriculture. BMC Genomics 2006; 7:229; PMID:16961921; http://dx.doi.org/10.1186/1471-2164-7-229 PubMed DOI PMC
Proteome Analysis of Condensed Barley Mitotic Chromosomes
Pseudotrypsin: A Little-Known Trypsin Proteoform
