Solid Lipid Nanoparticles Coated with Glucosylated poly(2-oxazoline)s: A Supramolecular Toolbox Approach

. 2025 Feb 10 ; 26 (2) : 861-882. [epub] 20250108

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39779305

Multifunctional polymers are interesting substances for the formulation of drug molecules that cannot be administered in their pure form due to their pharmacokinetic profiles or side effects. Polymer-drug formulations can enhance pharmacological properties or create tissue specificity by encapsulating the drug into nanocontainers, or stabilizing nanoparticles for drug transport. We present the synthesis of multifunctional poly(2-ethyl-2-oxazoline-co-2-glyco-2-oxazoline)s containing two reactive end groups, and an additional hydrophobic anchor at one end of the molecule. These polymers were successfully used to stabilize (solid) lipid nanoparticles ((S)LNP) consisting of tetradecan-1-ol and cholesterol with their hydrophobic anchor. While the pure polymers interacted with GLUT1-expressing cell lines mainly based on their physicochemical properties, especially via interactions of the hydrophobic anchor with membranous compartments of the cells, LNP-cell interactions hinted toward an influence of the glucosylation on particle-cell interactions. The presented LNP are therefore promising systems for the delivery of drugs into GLUT1-expressing cell lines.

Zobrazit více v PubMed

Shin M. D.; Shukla S.; Chung Y. H.; Beiss V.; Chan S. K.; Ortega-Rivera O. A.; Wirth D. M.; Chen A.; Sack M.; Pokorski J. K.; Steinmetz N. F. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 2020, 15 (8), 646–655. 10.1038/s41565-020-0737-y. PubMed DOI

Zhao Z.; Ukidve A.; Kim J.; Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020, 181 (1), 151–167. 10.1016/j.cell.2020.02.001. PubMed DOI

Allen T. M.; Cullis P. R. Drug Delivery Systems: Entering the Mainstream. Science 2004, 303 (5665), 1818–1822. 10.1126/science.1095833. PubMed DOI

Mitchell M. J.; Billingsley M. M.; Haley R. M.; Wechsler M. E.; Peppas N. A.; Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discovery 2021, 20 (2), 101–124. 10.1038/s41573-020-0090-8. PubMed DOI PMC

Friedl J. D.; Nele V.; De Rosa G.; Bernkop-Schnürch A.; Bioinert A. Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Adv. Funct. Mater. 2021, 31 (34), 2103347.10.1002/adfm.202103347. DOI

Albuquerque L. J. C.; Sincari V.; Jäger A.; Kucka J.; Humajova J.; Pankrac J.; Paral P.; Heizer T.; Janouškova O.; Davidovich I.; Talmon Y.; Pouckova P.; Štěpánek P.; Sefc L.; Hruby M.; Giacomelli F. C.; Jäger E. pH-responsive polymersome-mediated delivery of doxorubicin into tumor sites enhances the therapeutic efficacy and reduces cardiotoxic effects. J. Controlled Release 2021, 332, 529–538. 10.1016/j.jconrel.2021.03.013. PubMed DOI

Simon L.; Lapinte V.; Lionnard L.; Marcotte N.; Morille M.; Aouacheria A.; Kissa K.; Devoisselle J. M.; Bégu S. Polyoxazolines based lipid nanocapsules for topical delivery of antioxidants. Int. J. Pharm. 2020, 579, 119126.10.1016/j.ijpharm.2020.119126. PubMed DOI

Ekladious I.; Colson Y. L.; Grinstaff M. W. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discovery 2019, 18 (4), 273–294. 10.1038/s41573-018-0005-0. PubMed DOI

Cabral H.; Miyata K.; Osada K.; Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem. Rev. 2018, 118 (14), 6844–6892. 10.1021/acs.chemrev.8b00199. PubMed DOI

Loukotová L.; Švec P.; Groborz O.; Heizer T.; Beneš H.; Raabová H.; Bělinová T.; Herynek V.; Hrubý M. Direct Comparison of Analogous Amphiphilic Gradient and Block Polyoxazolines. Macromolecules 2021, 54 (17), 8182–8194. 10.1021/acs.macromol.0c02674. DOI

Quader S.; Cabral H.; Mochida Y.; Ishii T.; Liu X.; Toh K.; Kinoh H.; Miura Y.; Nishiyama N.; Kataoka K. Selective intracellular delivery of proteasome inhibitors through pH-sensitive polymeric micelles directed to efficient antitumor therapy. J. Controlled Release 2014, 188, 67–77. 10.1016/j.jconrel.2014.05.048. PubMed DOI

Elter J. K.; Eichhorn J.; Ringleb M.; Schacher F. H. Amine-containing diblock terpolymers via AROP: a versatile method for the generation of multifunctional micelles. Polym. Chem. 2021, 12 (27), 3900–3916. 10.1039/D1PY00666E. DOI

Zou Y.; Ito S.; Yoshino F.; Suzuki Y.; Zhao L.; Komatsu N. Polyglycerol Grafting Shields Nanoparticles from Protein Corona Formation to Avoid Macrophage Uptake. ACS Nano 2020, 14 (6), 7216–7226. 10.1021/acsnano.0c02289. PubMed DOI

Smolkova B.; Dusinska M.; Gabelova A. Nanomedicine and epigenome. Possible health risks. Food Chem. Toxicol. 2017, 109, 780–796. 10.1016/j.fct.2017.07.020. PubMed DOI

Wang L.; Yan L.; Liu J.; Chen C.; Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal. Chem. 2018, 90 (1), 589–614. 10.1021/acs.analchem.7b04765. PubMed DOI

Tenchov R.; Bird R.; Curtze A. E.; Zhou Q. Lipid Nanoparticles–From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15 (11), 16982–17015. 10.1021/acsnano.1c04996. PubMed DOI

Xu L.; Wang X.; Liu Y.; Yang G.; Falconer R. J.; Zhao C.-X. Lipid Nanoparticles for Drug Delivery. Adv. Nanobiomed Res. 2022, 2 (2), 2100109.10.1002/anbr.202100109. DOI

Scioli Montoto S.; Muraca G.; Ruiz M. E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020, 7, 587997.10.3389/fmolb.2020.587997. PubMed DOI PMC

Brezaniova I.; Hruby M.; Kralova J.; Kral V.; Cernochova Z.; Cernoch P.; Slouf M.; Kredatusova J.; Stepanek P. Temoporfin-loaded 1-tetradecanol-based thermoresponsive solid lipid nanoparticles for photodynamic therapy. J. Controlled Release 2016, 241, 34–44. 10.1016/j.jconrel.2016.09.009. PubMed DOI

Nogueira S. S.; Schlegel A.; Maxeiner K.; Weber B.; Barz M.; Schroer M. A.; Blanchet C. E.; Svergun D. I.; Ramishetti S.; Peer D.; Langguth P.; Sahin U.; Haas H. Polysarcosine-Functionalized Lipid Nanoparticles for Therapeutic mRNA Delivery. ACS Appl. Nano Mater. 2020, 3 (11), 10634–10645. 10.1021/acsanm.0c01834. DOI

Cheng Q.; Wei T.; Farbiak L.; Johnson L. T.; Dilliard S. A.; Siegwart D. J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 2020, 15 (4), 313–320. 10.1038/s41565-020-0669-6. PubMed DOI PMC

Slor G.; Olea A. R.; Pujals S.; Tigrine A.; De La Rosa V. R.; Hoogenboom R.; Albertazzi L.; Amir R. J. Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks. Biomacromolecules 2021, 22 (3), 1197–1210. 10.1021/acs.biomac.0c01708. PubMed DOI PMC

Schöttler S.; Becker G.; Winzen S.; Steinbach T.; Mohr K.; Landfester K.; Mailänder V.; Wurm F. R. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 2016, 11 (4), 372–377. 10.1038/nnano.2015.330. PubMed DOI

Corzo C.; Meindl C.; Lochmann D.; Reyer S.; Salar-Behzadi S. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 3: Application of polyglycerol esters of fatty acids for the next generation of solid lipid nanoparticles. Eur. J. Pharm. Sci. Biopharm 2020, 152, 44–55. 10.1016/j.ejpb.2020.04.027. PubMed DOI

Mehnert W.; Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Delivery Rev. 2001, 47 (2), 165–196. 10.1016/S0169-409X(01)00105-3. PubMed DOI

Van Guyse J. F. R.; Abbasi S.; Toh K.; Nagorna Z.; Li J.; Dirisala A.; Quader S.; Uchida S.; Kataoka K. Facile Generation of Heterotelechelic Poly(2-Oxazoline)s Towards Accelerated Exploration of Poly(2-Oxazoline)-Based Nanomedicine. Angew. Chem., Int. Ed. 2024, 63 (27), e20240497210.1002/anie.202404972. PubMed DOI

Dilliard S. A.; Siegwart D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 2023, 8 (4), 282–300. 10.1038/s41578-022-00529-7. PubMed DOI PMC

Sanchez A. J. D. S.; Loughrey D.; Echeverri E. S.; Huayamares S. G.; Radmand A.; Paunovska K.; Hatit M.; Tiegreen K. E.; Santangelo P. J.; Dahlman J. E. Substituting Poly(ethylene glycol) Lipids with Poly(2-ethyl-2-oxazoline) Lipids Improves Lipid Nanoparticle Repeat Dosing. Adv. Healthcare Mater. 2024, 13 (17), 2304033.10.1002/adhm.202304033. PubMed DOI

Simon L.; Marcotte N.; Devoisselle J. M.; Begu S.; Lapinte V. Recent advances and prospects in nano drug delivery systems using lipopolyoxazolines. Int. J. Pharm. 2020, 585, 119536.10.1016/j.ijpharm.2020.119536. PubMed DOI

Hoang Thi T. T.; Pilkington E. H.; Nguyen D. H.; Lee J. S.; Park K. D.; Truong N. P. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers 2020, 12 (2), 298.10.3390/polym12020298. PubMed DOI PMC

Bruusgaard-Mouritsen M. A.; Johansen J. D.; Garvey L. H. Clinical manifestations and impact on daily life of allergy to polyethylene glycol (PEG) in ten patients. Clin. Exp. Allergy 2021, 51 (3), 463–470. 10.1111/cea.13822. PubMed DOI

Gangloff N.; Ulbricht J.; Lorson T.; Schlaad H.; Luxenhofer R. Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering. Chem. Rev. 2016, 116 (4), 1753–1802. 10.1021/acs.chemrev.5b00201. PubMed DOI

Zhang P.; Li M.; Xiao C.; Chen X. Stimuli-responsive polypeptides for controlled drug delivery. Chem. Commun. 2021, 57 (75), 9489–9503. 10.1039/D1CC04053G. PubMed DOI

Han S.-S.; Li Z.-Y.; Zhu J.-Y.; Han K.; Zeng Z.-Y.; Hong W.; Li W.-X.; Jia H.-Z.; Liu Y.; Zhuo R.-X.; Zhang X.-Z. Dual-pH Sensitive Charge-Reversal Polypeptide Micelles for Tumor-Triggered Targeting Uptake and Nuclear Drug Delivery. Small 2015, 11 (21), 2543–2554. 10.1002/smll.201402865. PubMed DOI

Chytil P.; Koziolová E.; Etrych T.; Ulbrich K. HPMA Copolymer–Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol. Biosci. 2018, 18 (1), 1700209.10.1002/mabi.201700209. PubMed DOI

Bludau H.; Czapar A. E.; Pitek A. S.; Shukla S.; Jordan R.; Steinmetz N. F. POxylation as an alternative stealth coating for biomedical applications. Eur. Polym. J. 2017, 88, 679–688. 10.1016/j.eurpolymj.2016.10.041. PubMed DOI PMC

Muljajew I.; Huschke S.; Ramoji A.; Cseresnyés Z.; Hoeppener S.; Nischang I.; Foo W.; Popp J.; Figge M. T.; Weber C.; Bauer M.; Schubert U. S.; Press A. T. Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of Backbone End Group Determine Liver Cell-Type Specificity. ACS Nano 2021, 15 (7), 12298–12313. 10.1021/acsnano.1c04213. PubMed DOI

Nemati Mahand S.; Aliakbarzadeh S.; Moghaddam A.; Salehi Moghaddam A.; Kruppke B.; Nasrollahzadeh M.; Khonakdar H. A. Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. Eur. Polym. J. 2022, 178, 111484.10.1016/j.eurpolymj.2022.111484. DOI

England R. M.; Hare J. I.; Kemmitt P. D.; Treacher K. E.; Waring M. J.; Barry S. T.; Alexander C.; Ashford M. Enhanced cytocompatibility and functional group content of poly(l-lysine) dendrimers by grafting with poly(oxazolines). Polym. Chem. 2016, 7 (28), 4609–4617. 10.1039/C6PY00478D. DOI

Glassner M.; Vergaelen M.; Hoogenboom R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polym. Int. 2018, 67 (1), 32–45. 10.1002/pi.5457. DOI

Jana S.; Hoogenboom R. Poly(2-oxazoline)s: a comprehensive overview of polymer structures and their physical properties-an update. Polym. Int. 2022, 71 (8), 935–949. 10.1002/pi.6426. DOI

Zhou M.; Qian Y.; Xie J.; Zhang W.; Jiang W.; Xiao X.; Chen S.; Dai C.; Cong Z.; Ji Z.; Shao N.; Liu L.; Wu Y.; Liu R. Poly(2-Oxazoline)-Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angew. Chem., Int. Ed. 2020, 59 (16), 6412–6419. 10.1002/anie.202000505. PubMed DOI

Takasu A.; Kojima H. Synthesis and ring-opening polymerizations of novel S-glycooxazolines. J. Polym. Sci. A Polym. Chem. 2010, 48 (24), 5953–5960. 10.1002/pola.24411. DOI

de la Rosa V. R.; Bauwens E.; Monnery B. D.; De Geest B. G.; Hoogenboom R. Fast and accurate partial hydrolysis of poly(2-ethyl-2-oxazoline) into tailored linear polyethylenimine copolymers. Polym. Chem. 2014, 5 (17), 4957–4964. 10.1039/C4PY00355A. DOI

Sedlacek O.; Janouskova O.; Verbraeken B.; Hoogenboom R. Straightforward Route to Superhydrophilic Poly(2-oxazoline)s via Acylation of Well-Defined Polyethylenimine. Biomacromolecules 2019, 20 (1), 222–230. 10.1021/acs.biomac.8b01366. PubMed DOI

Kempe K.; Weber C.; Babiuch K.; Gottschaldt M.; Hoogenboom R.; Schubert U. S. Responsive Glyco-poly(2-oxazoline)s: Synthesis, Cloud Point Tuning, and Lectin Binding. Biomacromolecules 2011, 12 (7), 2591–2600. 10.1021/bm2003847. PubMed DOI

Podevyn A.; Arys K.; de la Rosa V. R.; Glassner M.; Hoogenboom R. End-group functionalization of poly(2-oxazoline)s using methyl bromoacetate as initiator followed by direct amidation. Eur. Polym. J. 2019, 120, 109273.10.1016/j.eurpolymj.2019.109273. DOI

Chujo Y.; Ihara E.; Kure S.; Saegusa T. Synthesis of triethoxysilyl-terminated polyoxazolines and their cohydrolysis polymerization with tetraethoxysilane. Macromolecules 1993, 26 (21), 5681–5686. 10.1021/ma00073a023. DOI

Volet G.; Deschamps A.-C. L.; Amiel C. Association of hydrophobically α,ω-end-capped poly(2-methyl-2-oxazoline) in water. J. Polym. Sci., Part A:Polym. Chem. 2010, 48 (11), 2477–2485. 10.1002/pola.24019. DOI

He X.; Payne T. J.; Takanashi A.; Fang Y.; Kerai S. D.; Morrow J. P.; Al-Wassiti H.; Pouton C. W.; Kempe K. Tailored Monoacyl Poly(2-oxazoline)- and Poly(2-oxazine)-Lipids as PEG-Lipid Alternatives for Stabilization and Delivery of mRNA-Lipid Nanoparticles. Biomacromolecules 2024, 25 (7), 4591–4603. 10.1021/acs.biomac.4c00651. PubMed DOI

Wagner S.; Zensi A.; Wien S. L.; Tschickardt S. E.; Maier W.; Vogel T.; Worek F.; Pietrzik C. U.; Kreuter J.; von Briesen H. Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model. PLoS One 2012, 7 (3), e3256810.1371/journal.pone.0032568. PubMed DOI PMC

Yang T.; Mochida Y.; Liu X.; Zhou H.; Xie J.; Anraku Y.; Kinoh H.; Cabral H.; Kataoka K. Conjugation of glucosylated polymer chains to checkpoint blockade antibodies augments their efficacy and specificity for glioblastoma. Nat. Biomed. Eng. 2021, 5 (11), 1274–1287. 10.1038/s41551-021-00803-z. PubMed DOI

Anraku Y.; Kuwahara H.; Fukusato Y.; Mizoguchi A.; Ishii T.; Nitta K.; Matsumoto Y.; Toh K.; Miyata K.; Uchida S.; Nishina K.; Osada K.; Itaka K.; Nishiyama N.; Mizusawa H.; Yamasoba T.; Yokota T.; Kataoka K. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat. Commun. 2017, 8 (1), 1001.10.1038/s41467-017-00952-3. PubMed DOI PMC

Barnett J. E.; Holman G. D.; Munday K. A. Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochem. J. 1973, 131 (2), 211–221. 10.1042/bj1310211. PubMed DOI PMC

Min H. S.; Kim H. J.; Naito M.; Ogura S.; Toh K.; Hayashi K.; Kim B. S.; Fukushima S.; Anraku Y.; Miyata K.; Kataoka K. Systemic Brain Delivery of Antisense Oligonucleotides across the Blood–Brain Barrier with a Glucose-Coated Polymeric Nanocarrier. Angew. Chem., Int. Ed. 2020, 59 (21), 8173–8180. 10.1002/anie.201914751. PubMed DOI PMC

Soria-Martinez L.; Bauer S.; Giesler M.; Schelhaas S.; Materlik J.; Janus K.; Pierzyna P.; Becker M.; Snyder N. L.; Hartmann L.; Schelhaas M. Prophylactic Antiviral Activity of Sulfated Glycomimetic Oligomers and Polymers. J. Am. Chem. Soc. 2020, 142 (11), 5252–5265. 10.1021/jacs.9b13484. PubMed DOI

Stenzel M. H. Glycopolymers for Drug Delivery: Opportunities and Challenges. Macromolecules 2022, 55 (12), 4867–4890. 10.1021/acs.macromol.2c00557. DOI

Nishimura S. I.; Nagahori N.. 3.22 - Glycopolymers. In Comprehensive Glycoscience; Kamerling H., Ed.; Elsevier: Oxford, 2007; pp 453–476.

Milusev A.; Rieben R.; Sorvillo N. The Endothelial Glycocalyx: A Possible Therapeutic Target in Cardiovascular Disorders. Front. Cardiovasc. Med. 2022, 9, 897087.10.3389/fcvm.2022.897087. PubMed DOI PMC

Elter J. K.; Liščáková V.; Moravec O.; Vragović M.; Filipová M.; Štěpánek P.; Šácha P.; Hrubý M. Solid-Phase Synthesis as a Tool to Create Exactly Defined, Branched Polymer Vectors for Cell Membrane Targeting. Macromolecules 2024, 57 (3), 1050–1071. 10.1021/acs.macromol.3c02600. PubMed DOI PMC

Neděla V.; Tihlaříková E.; Cápal P.; Doležel J. Advanced environmental scanning electron microscopy reveals natural surface nano-morphology of condensed mitotic chromosomes in their native state. Sci. Rep. 2024, 14 (1), 12998.10.1038/s41598-024-63515-9. PubMed DOI PMC

Lobaz V.; Liščáková V.; Sedlák F.; Musil D.; Petrova S. L.; Šeděnková I.; Pánek J.; Kučka J.; Konefał R.; Tihlaříková E.; Neděla V.; Pankrác J.; Šefc L.; Hrubý M.; Šácha P.; Štěpánek P. Tuning polymer–blood and polymer–cytoplasm membrane interactions by manipulating the architecture of poly(2-oxazoline) triblock copolymers. Colloids Surf., B 2023, 231, 113564.10.1016/j.colsurfb.2023.113564. PubMed DOI

Hough L.; Jones J. K. N.; Magson M. S.; Bell F.; Braude E. A.; Fawcett J. S.; Smith G. H.; Smith F. E.; Boon W. R. Methylene Derivatives of D-Galactose and D-Glucose. J. Am. Chem. Soc. 1952, (0), 1524–1532.

Borges-González J.; García-Monzón I.; Martín T. Conformational Control of Tetrahydropyran-Based Hybrid Dipeptide Catalysts Improves Activity and Stereoselectivity. Adv. Synth. Catal. 2019, 361 (9), 2141–2147. 10.1002/adsc.201900247. DOI

Arai M. A.; Yamaguchi Y.; Ishibashi M. Total synthesis of agalloside, isolated from Aquilaria agallocha, by the 5-O-glycosylation of flavan. Org. Biomol. Chem. 2017, 15 (23), 5025–5032. 10.1039/C7OB01004D. PubMed DOI

Mansueto M.; Frey W.; Laschat S. Ionic Liquid Crystals Derived from Amino Acids. Chem.—Eur. J. 2013, 19 (47), 16058–16065. 10.1002/chem.201302319. PubMed DOI

Ke C.; Smaldone R. A.; Kikuchi T.; Li H.; Davis A. P.; Stoddart J. F. Quantitative Emergence of Hetero[4]rotaxanes by Template-Directed Click Chemistry. Angew. Chem., Int. Ed. 2013, 52 (1), 381–387. 10.1002/anie.201205087. PubMed DOI

Treitler D. S.; Leung S. How Dangerous Is Too Dangerous? A Perspective on Azide Chemistry. J. Org. Chem. 2022, 87 (17), 11293–11295. 10.1021/acs.joc.2c01402. PubMed DOI

Han S.-E.; Kang H.; Shim G. Y.; Suh M. S.; Kim S. J.; Kim J.-S.; Oh Y.-K. Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA. Int. J. Pharm. 2008, 353 (1), 260–269. 10.1016/j.ijpharm.2007.11.026. PubMed DOI

Toutchkine A.; Nalbant P.; Hahn K. M. Facile Synthesis of Thiol-Reactive Cy3 and Cy5 Derivatives with Enhanced Water Solubility. Bioconj. Chem. 2002, 13 (3), 387–391. 10.1021/bc015558q. PubMed DOI

Dussart-Gautheret J.; Deschamp J.; Monteil M.; Gager O.; Legigan T.; Migianu-Griffoni E.; Lecouvey M. Formation of 1-Hydroxymethylene-1,1-bisphosphinates through the Addition of a Silylated Phosphonite on Various Trivalent Derivatives. J. Org. Chem. 2020, 85 (22), 14559–14569. 10.1021/acs.joc.0c01182. PubMed DOI

Grabowska U.; MacManus D. A.; Biggadike K.; Bird M. I.; Davies S.; Gallagher T.; Hall L. D.; Vulfson E. N. Diastereoselective resolution of 6-substituted glycosides via enzymatic hydrolysis. Carbohydr. Res. 1997, 305 (3), 351–361. 10.1016/S0008-6215(97)00246-2. PubMed DOI

Plattner J. J.; Gless R. D.; Rapoport H. Synthesis of some DE and CDE ring analogs of camptothecin. J. Am. Chem. Soc. 1972, 94 (24), 8613–8615. 10.1021/ja00779a072. PubMed DOI

Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; Rueden C.; Saalfeld S.; Schmid B.; Tinevez J.-Y.; White D. J.; Hartenstein V.; Eliceiri K.; Tomancak P.; Cardona A. Fiji: an open-source platform for biological-image analysis. Nat. Methods 2012, 9 (7), 676–682. 10.1038/nmeth.2019. PubMed DOI PMC

Sezonenko T.; Qiu X.-P.; Winnik F. M.; Sato T. Dehydration, Micellization, and Phase Separation of Thermosensitive Polyoxazoline Star Block Copolymers in Aqueous Solution. Macromolecules 2019, 52 (3), 935–944. 10.1021/acs.macromol.8b02528. DOI

Waschinski C. J.; Tiller J. C. Poly(oxazoline)s with Telechelic Antimicrobial Functions. Biomacromolecules 2005, 6 (1), 235–243. 10.1021/bm049553i. PubMed DOI

El Asmar A.; Gimello O.; Morandi G.; Le Cerf D.; Lapinte V.; Burel F. Tuning the Thermo-Sensitivity of Micellar Systems through a Blending Approach. Macromolecules 2016, 49 (11), 4307–4315. 10.1021/acs.macromol.6b00455. DOI

Kujawa P.; Segui F.; Shaban S.; Diab C.; Okada Y.; Tanaka F.; Winnik F. M. Impact of End-Group Association and Main-Chain Hydration on the Thermosensitive Properties of Hydrophobically Modified Telechelic Poly(N-isopropylacrylamides) in Water. Macromolecules 2006, 39 (1), 341–348. 10.1021/ma051876z. DOI

Lefley J.; Varanaraja Z.; Drain B.; Huband S.; Beament J.; Becer C. R. Amphiphilic oligo(2-ethyl-2-oxazoline)s via straightforward synthesis and their self-assembly behaviour. Polym. Chem. 2023, 14 (43), 4890–4897. 10.1039/D3PY00809F. DOI

Volet G.; Chanthavong V.; Wintgens V.; Amiel C. Synthesis of Monoalkyl End-Capped Poly(2-methyl-2-oxazoline) and Its Micelle Formation in Aqueous Solution. Macromolecules 2005, 38 (12), 5190–5197. 10.1021/ma050407u. DOI

Rizzo W. B. Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function. Biochim. Biophys. Acta 2014, 1841 (3), 377–389. 10.1016/j.bbalip.2013.09.001. PubMed DOI PMC

Antonietti M.; Förster S. Vesicles and Liposomes: A Self-Assembly Principle Beyond Lipids. Adv. Mater. 2003, 15 (16), 1323–1333. 10.1002/adma.200300010. DOI

Rudolph T.; Crotty S.; Schubert U. S.; Schacher F. H. Star-shaped poly(2-ethyl-2-oxazoline) featuring a porphyrin core: synthesis and metal complexation. e-Polymers 2015, 15 (4), 227–235. 10.1515/epoly-2015-0041. DOI

Roy R.; Hohng S.; Ha T. A practical guide to single-molecule FRET. Nat. Methods 2008, 5 (6), 507–516. 10.1038/nmeth.1208. PubMed DOI PMC

Inukai K.; Shewan A. M.; Pascoe W. S.; Katayama S.; James D. E.; Oka Y. Carboxy Terminus of Glucose Transporter 3 Contains an Apical Membrane Targeting Domain. Mol. Endocrinol. 2004, 18 (2), 339–349. 10.1210/me.2003-0089. PubMed DOI

Cannistraci A.; Hascoet P.; Ali A.; Mundra P.; Clarke N. W.; Pavet V.; Marais R. MiR-378a inhibits glucose metabolism by suppressing GLUT1 in prostate cancer. Oncogene 2022, 41 (10), 1445–1455. 10.1038/s41388-022-02178-0. PubMed DOI PMC

Kinoh H.; Shibasaki H.; Liu X.; Yamasoba T.; Cabral H.; Kataoka K. Nanomedicines blocking adaptive signals in cancer cells overcome tumor TKI resistance. J. Controlled Release 2020, 321, 132–144. 10.1016/j.jconrel.2020.02.008. PubMed DOI

Jiang Z.; Liu H.; He H.; Yadava N.; Chambers J. J.; Thayumanavan S. Anionic Polymers Promote Mitochondrial Targeting of Delocalized Lipophilic Cations. Bioconj. Chem. 2020, 31 (5), 1344–1353. 10.1021/acs.bioconjchem.0c00079. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...