Mutations in spliceosomal proteins and retina degeneration
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
27302685
PubMed Central
PMC5449078
DOI
10.1080/15476286.2016.1191735
Knihovny.cz E-zdroje
- Klíčová slova
- Retinitis pigmentosa, snRNP, splicing,
- MeSH
- introny MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- missense mutace MeSH
- myši MeSH
- prekurzory RNA genetika metabolismus MeSH
- retinopathia pigmentosa genetika MeSH
- ribonukleoproteiny malé jaderné genetika metabolismus MeSH
- sestřih RNA MeSH
- sestřihové faktory genetika metabolismus MeSH
- spliceozomy genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- prekurzory RNA MeSH
- ribonukleoproteiny malé jaderné MeSH
- sestřihové faktory MeSH
A majority of human genes contain non-coding intervening sequences - introns that must be precisely excised from the pre-mRNA molecule. This event requires the coordinated action of five major small nuclear ribonucleoprotein particles (snRNPs) along with additional non-snRNP splicing proteins. Introns must be removed with nucleotidal precision, since even a single nucleotide mistake would result in a reading frame shift and production of a non-functional protein. Numerous human inherited diseases are caused by mutations that affect splicing, including mutations in proteins which are directly involved in splicing catalysis. One of the most common hereditary diseases associated with mutations in core splicing proteins is retinitis pigmentosa (RP). So far, mutations in more than 70 genes have been connected to RP. While the majority of mutated genes are expressed specifically in the retina, eight target genes encode for ubiquitous core snRNP proteins (Prpf3, Prpf4, Prpf6, Prpf8, Prpf31, and SNRNP200/Brr2) and splicing factors (RP9 and DHX38). Why mutations in spliceosomal proteins, which are essential in nearly every cell in the body, causes a disease that displays such a tissue-specific phenotype is currently a mystery. In this review, we recapitulate snRNP functions, summarize the missense mutations which are found in spliceosomal proteins as well as their impact on protein functions and discuss specific models which may explain why the retina is sensitive to these mutations.
Zobrazit více v PubMed
Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol 2014; 15:108-21; PMID:24452469; http://dx.doi.org/10.1038/nrm3742 PubMed DOI PMC
Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell 2009; 136:701-18; PMID:19239890; http://dx.doi.org/10.1016/j.cell.2009.02.009 PubMed DOI
Chabot B, Shkreta L. Defective control of pre-messenger RNA splicing in human disease. J Cell Biol 2016; 212:13-27; PMID:26728853; http://dx.doi.org/10.1083/jcb.201510032 PubMed DOI PMC
Linder B, Fischer U, Gehring NH. mRNA metabolism and neuronal disease. FEBS Lett 2015; 589:1598-606; PMID:25957814; http://dx.doi.org/10.1016/j.febslet.2015.04.052 PubMed DOI
Daiger SP, Sullivan LS, Bowne SJ. Genes and mutations causing retinitis pigmentosa. Clin Genetics 2013; 84:132-41; PMID:23701314; http://dx.doi.org/10.1111/cge.12203 PubMed DOI PMC
Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006; 368:1795-809; PMID:17113430; http://dx.doi.org/10.1016/S0140-6736(06)69740-7 PubMed DOI
Huranova M, Ivani I, Benda A, Poser I, Brody Y, Hof M, Shav-Tal Y, Neugebauer KM, Stanek D. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J Cell Biol 2010; 191:75-86; PMID:20921136; http://dx.doi.org/10.1083/jcb.201004030 PubMed DOI PMC
Gornemann J, Kotovic KM, Hujer K, Neugebauer KM. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell 2005; 19:53-63; PMID:15989964; http://dx.doi.org/10.1016/j.molcel.2005.05.007 PubMed DOI
Kondo Y, Oubridge C, van Roon AM, Nagai K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5′ splice site recognition. Elife 2015; 4:e04986 PubMed PMC
Sickmier EA, Frato KE, Shen H, Paranawithana SR, Green MR, Kielkopf CL. Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol Cell 2006; 23:49-59; PMID:16818232; http://dx.doi.org/10.1016/j.molcel.2006.05.025 PubMed DOI PMC
Papasaikas P, Valcarcel J. The Spliceosome: The Ultimate RNA Chaperone and Sculptor. Trends Biochem Sci 2016; 41:33-45; PMID:26682498; http://dx.doi.org/10.1016/j.tibs.2015.11.003 PubMed DOI
Laggerbauer B, Achsel T, Luhrmann R. The human U5-200 kD DEXH-box protein unwinds U4/U6 RNA duplices in vitro. Proc Natl Acad Sci U S A 1998; 95:4188-92; PMID:9539711; http://dx.doi.org/10.1073/pnas.95.8.4188 PubMed DOI PMC
Kim DH, Rossi JJ. The first ATPase domain of the yeast 246-kDa protein is required for in vivo unwinding of the U4/U6 duplex. RNA 1999; 5:959-71; PMID:10411139; http://dx.doi.org/10.1017/S135583829999012X PubMed DOI PMC
Berglund JA, Chua K, Abovich N, Reed R, Rosbash M. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell 1997; 89:781-7; PMID:9182766; http://dx.doi.org/10.1016/S0092-8674(00)80261-5 PubMed DOI
Keating KS, Toor N, Perlman PS, Pyle AM. A structural analysis of the group II intron active site and implications for the spliceosome. RNA 2010; 16:1-9; PMID:19948765; http://dx.doi.org/10.1261/rna.1791310 PubMed DOI PMC
Anokhina M, Bessonov S, Miao Z, Westhof E, Hartmuth K, Luhrmann R. RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core. EMBO J 2013; 32:2804-18; PMID:24002212; http://dx.doi.org/10.1038/emboj.2013.198 PubMed DOI PMC
Jaladat Y, Zhang B, Mohammadi A, Valadkhan S. Splicing of an intervening sequence by protein-free human snRNAs. RNA Biol 2011; 8:372-7; PMID:21445000; http://dx.doi.org/10.4161/rna.8.3.15386 PubMed DOI PMC
Valadkhan S. Role of the snRNAs in spliceosomal active site. RNA Biol 2010; 7:345-53; PMID:20458185; http://dx.doi.org/10.4161/rna.7.3.12089 PubMed DOI
Yan C, Hang J, Wan R, Huang M, Wong CC, Shi Y. Structure of a yeast spliceosome at 3.6-Å resolution. Science 2015; 349:1182-91; PMID:26292707; http://dx.doi.org/10.1126/science.aac7629 PubMed DOI
Hang J, Wan R, Yan C, Shi Y. Structural basis of pre-mRNA splicing. Science 2015; 349:1191-8; PMID:26292705; http://dx.doi.org/10.1126/science.aac8159 PubMed DOI
Konig SL, Liyanage PS, Sigel RK, Rueda D. Helicase-mediated changes in RNA structure at the single-molecule level. RNA Biol 2013; 10:133-48; PMID:23353571; http://dx.doi.org/10.4161/rna.23507 PubMed DOI PMC
Fourmann JB, Schmitzova J, Christian H, Urlaub H, Ficner R, Boon KL, Fabrizio P, Lührmann R. Dissection of the factor requirements for spliceosome disassembly and the elucidation of its dissociation products using a purified splicing system. Genes Dev 2013; 27:413-28; PMID:23431055; http://dx.doi.org/10.1101/gad.207779.112 PubMed DOI PMC
Spiluttini B, Gu B, Belagal P, Smirnova AS, Nguyen VT, Hebert C, Schmidt U, Bertrand E, Darzacq X, Bensaude O. Splicing-independent recruitment of U1 snRNP to a transcription unit in living cells. J Cell Sci 2010; 123:2085-93; PMID:20519584; http://dx.doi.org/10.1242/jcs.061358 PubMed DOI
Yu Y, Reed R. FUS functions in coupling transcription to splicing by mediating an interaction between RNAP II and U1 snRNP. Proc Natl Acad Sci U S A 2015; 112:8608-13; PMID:26124092; http://dx.doi.org/10.1073/pnas.1506282112 PubMed DOI PMC
Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, et al.. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009; 323:1205-8; PMID:19251627; http://dx.doi.org/10.1126/science PubMed DOI
Yu Y, Chi B, Xia W, Gangopadhyay J, Yamazaki T, Winkelbauer-Hurt ME, Yin S, Eliasse Y, Adams E, Shaw CE, et al.. U1 snRNP is mislocalized in ALS patient fibroblasts bearing NLS mutations in FUS and is required for motor neuron outgrowth in zebrafish. Nucleic Acids Res 2015; 43:3208-18; PMID:25735748; http://dx.doi.org/10.1093/nar/gkv157 PubMed DOI PMC
Stejskalova E, Stanek D. The splicing factor U1-70K interacts with the SMN complex and is required for nuclear gem integrity. J Cell Sci 2014; 127:3909-15; PMID:25052091; http://dx.doi.org/10.1242/jcs.15538 PubMed DOI
Nottrott S, Urlaub H, Luhrmann R. Hierarchical, clustered protein interactions with U4/U6 snRNA: a biochemical role for U4/U6 proteins. Embo J 2002; 21:5527-38; PMID:12374753; http://dx.doi.org/10.1093/emboj/cdf544 PubMed DOI PMC
Liu S, Mozaffari-Jovin S, Wollenhaupt J, Santos KF, Theuser M, Dunin-Horkawicz S, Fabrizio P, Bujnicki JM, Lührmann R, Wahl MC. A composite double-/single-stranded RNA-binding region in protein Prp3 supports tri-snRNP stability and splicing. ELife 2015; 4:e07320; PMID:26161500; http://dx.doi.org/10.7554/eLife.07320 PubMed DOI PMC
Liu S, Rauhut R, Vornlocher HP, Luhrmann R. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP. RNA 2006; 12:1418-30; PMID:16723661; http;//dx.doi.org/10.1261/rna.55406 PubMed DOI PMC
Maita H, Kitaura H, Ariga H, Iguchi-Ariga SM. Association of PAP-1 and Prp3p, the products of causative genes of dominant retinitis pigmentosa, in the tri-snRNP complex. Exp Cell Res 2005; 302:61-8; PMID:15541726; http://dx.doi.org/10.1016/j.yexcr.2004.08.022 PubMed DOI
Chakarova CF, Hims MM, Bolz H, Abu-Safieh L, Patel RJ, Papaioannou MG, Inglehearn CF, Keen TJ, Willis C, Moore AT, et al.. Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum Mol Genet 2002; 11:87-92; PMID:11773002; http://dx.doi.org/10.1093/hmg/11.1.87 PubMed DOI
Gamundi MJ, Hernan I, Muntanyola M, Maseras M, Lopez-Romero P, Alvarez R, Dopazo A, Borrego S, Carballo M. Transcriptional expression of cis-acting and trans-acting splicing mutations cause autosomal dominant retinitis pigmentosa. Human mutation 2008; 29:869-78; PMID:18412284; http://dx.doi.org/10.1002/humu.20747 PubMed DOI
Comitato A, Spampanato C, Chakarova C, Sanges D, Bhattacharya SS, Marigo V. Mutations in splicing factor PRPF3, causing retinal degeneration, form detrimental aggregates in photoreceptor cells. Hum Mol Genet 2007; 16:1699-707; PMID:17517693; http://dx.doi.org/10.1093/hmg/ddm118 PubMed DOI
Gonzalez-Santos JM, Cao H, Duan RC, Hu J. Mutation in the splicing factor Hprp3p linked to retinitis pigmentosa impairs interactions within the U4/U6 snRNP complex. Hum Mol Genet 2008; 17:225-39; PMID:17932117; http://dx.doi.org/10.1093/hmg/ddm300 PubMed DOI PMC
Tanackovic G, Ransijn A, Thibault P, Abou Elela S, Klinck R, Berson EL, Chabot B, Rivolta C. PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum Mol Genet 2011; 20:2116-30; PMID:21378395; http://dx.doi.org/10.1093/hmg/ddr094 PubMed DOI PMC
Graziotto JJ, Inglehearn CF, Pack MA, Pierce EA. Decreased levels of the RNA splicing factor Prpf3 in mice and zebrafish do not cause photoreceptor degeneration. Invest Ophthalmol Visual Sci 2008; 49:3830-8; PMID:18552388; http://dx.doi.org/2511122710.1167/iovs.07-1483 PubMed DOI
Graziotto JJ, Farkas MH, Bujakowska K, Deramaudt BM, Zhang Q, Nandrot EF, Inglehearn CF, Bhattacharya SS, Pierce EA. Three gene-targeted mouse models of RNA splicing factor RP show late-onset RPE and retinal degeneration. Invest Ophthalmol Visual Sci 2011; 52:190-8; PMID:20811066; http://dx.doi.org/2511122710.1167/iovs.10-5194 PubMed DOI PMC
Farkas MH, Lew DS, Sousa ME, Bujakowska K, Chatagnon J, Bhattacharya SS, Pierce EA, Nandrot EF. Mutations in pre-mRNA processing factors 3, 8, and 31 cause dysfunction of the retinal pigment epithelium. Am J Pathol 2014; 184:2641-52; PMID:25111227; http://dx.doi.org/10.1016/j.apath.2014.06.026 PubMed DOI PMC
Linder B, Dill H, Hirmer A, Brocher J, Lee GP, Mathavan S, Bolz HJ, Winkler C, Laggerbauer B, Fischer U. Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosa. Hum Mol Genet 2011; 20:368-77; PMID:21051334; http://dx.doi.org/2441931710.1093/hmg/ddq473 PubMed DOI
Chen X, Liu Y, Sheng X, Tam PO, Zhao K, Chen X, Rong W, Liu Y, Liu X, Pan X, et al.. PRPF4 mutations cause autosomal dominant retinitis pigmentosa. Hum Mol Genet 2014; 23(11):2926-39; PMID:24419317; http://dx.doi.org/10.1093/hmg/ddu005 PubMed DOI
Linder B, Hirmer A, Gal A, Ruther K, Bolz HJ, Winkler C, Laggerbauer B, Fischer U. Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa. PLoS One 2014; 9:e111754; PMID:25383878; http://dx.doi.org/10.1371/journal.pone.0111754 PubMed DOI PMC
Benaglio P, San Jose PF, Avila-Fernandez A, Ascari G, Harper S, Manes G, Ayuso C, Hamel C, Berson EL, Rivolta C. Mutational screening of splicing factor genes in cases with autosomal dominant retinitis pigmentosa. Mol Vision 2014; 20:843-51; PMID:2495906310788320 PubMed PMC
Makarov EM, Makarova OV, Achsel T, Luhrmann R. The human homologue of the yeast splicing factor prp6p contains multiple TPR elements and is stably associated with the U5 snRNP via protein-protein interactions. J Mol Biol 2000; 298:567-75; PMID:10788320; http://dx.doi.org/101006/jmbi.2000.3685 PubMed
Makarova OV, Makarov EM, Liu S, Vornlocher HP, Luhrmann R. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6center dotU5 tri-snRNP formation and pre-mRNA splicing. Embo J 2002; 21:1148-57; PMID:11867543; http://dx.doi.org/10.1093/emboj/21.5.1148 PubMed DOI PMC
Tanackovic G, Ransijn A, Ayuso C, Harper S, Berson EL, Rivolta C. A missense mutation in PRPF6 causes impairment of pre-mRNA splicing and autosomal-dominant retinitis pigmentosa. Am J Hum Genet 2011; 88:643-9; PMID:21549338; http://dx.doi.org/10.1016/j.ajhg.2011.04.008 PubMed DOI PMC
Novotny I, Malinova A, Stejskalova E, Mateju D, Klimesova K, Roithova A, Švéda M, Knejzlík Z, Staněk D. SART3-Dependent accumulation of incomplete spliceosomal snRNPs in cajal bodies. Cell Reports 2015; 10:429-40; PMID:25600876; http://dx.doi.org/2223533310.1016/j.celrep.2014.12.030 PubMed DOI
Velinov M, Dolzhanskaya N, Gonzalez M, Powell E, Konidari I, Hulme W, Staropoli JF, Xin W, Wen GY, Barone R, et al.. Mutations in the gene DNAJC5 cause autosomal dominant Kufs disease in a proportion of cases: study of the Parry family and 8 other families. PLoS One 2012; 7:e29729; PMID:22235333; http://dx.doi.org/10.1371/journal.pone.0029729 PubMed DOI PMC
Galej WP, Nguyen TH, Newman AJ, Nagai K. Structural studies of the spliceosome: zooming into the heart of the machine. Curr Opin Struct Biol 2014; 25:57-66; PMID:24480332; http://dx.doi.org/10.1016/j.sbi.2013.12.002 PubMed DOI PMC
Pena V, Liu S, Bujnicki JM, Luhrmann R, Wahl MC. Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol Cell 2007; 25:615-24; PMID:17317632; http://dx.doi.org/10.1016/j.molcel.2007.01.023 PubMed DOI
Nguyen TH, Li J, Galej WP, Oshikane H, Newman AJ, Nagai K. Structural basis of Brr2-Prp8 interactions and implications for U5 snRNP biogenesis and the spliceosome active site. Structure 2013; 21:910-19; PMID:23727230; http://dx.doi.org/10.1016/j.str.2013.04.017 PubMed DOI PMC
Mozaffari-Jovin S, Wandersleben T, Santos KF, Will CL, Luhrmann R, Wahl MC. Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science 2013; 341:80-4; PMID:23704370; hhtp://dx.doi.org/10.1126/science.1237515 PubMed DOI
Mozaffari-Jovin S, Wandersleben T, Santos KF, Will CL, Luhrmann R, Wahl MC. Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans. RNA Biol 2014; 11:298-312; PMID:24643059; http;//dx.doi.org/10.4161/rna.28353 PubMed DOI PMC
Maeder C, Kutach AK, Guthrie C. ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nat Struct Mol Biol 2009; 16:42-8; PMID:19098916; http://dx.doi.org/10.1038/nsmb PubMed DOI PMC
Boon KL, Grainger RJ, Ehsani P, Barrass JD, Auchynnikava T, Inglehearn CF, Beggs JD. prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast. Nat Struct Mol Biol 2007; 14:1077-83; PMID:17934474; http;//dx.doi.org/10.1038/nsmb1303 PubMed DOI PMC
Wickramasinghe VO, Gonzalez-Porta M, Perera D, Bartolozzi AR, Sibley CR, Hallegger M, Ule J, Marioni JC, Venkitaraman AR. Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5′ splice site strength. Genome Biol 2015; 16:201; PMID:26392272; http://dx.doi.org/10.1186/s13059-015-0749-3 PubMed DOI PMC
Papasaikas P, Tejedor JR, Vigevani L, Valcarcel J. Functional splicing network reveals extensive regulatory potential of the core spliceosomal machinery. Mol Cell 2015; 57:7-22; PMID:25482510; http;//dx.doi.org/10.1016/j.molcel.2014.10.030 PubMed DOI
Kurtovic-Kozaric A, Przychodzen B, Singh J, Konarska MM, Clemente MJ, Otrock ZK, Nakashima M, Hsi ED, Yoshida K, Shiraishi Y, et al.. PRPF8 defects cause missplicing in myeloid malignancies. Leukemia 2015; 29:126-36; PMID:24781015; http://dx.doi.org/10.1038/leu.2014.144 PubMed DOI PMC
Schaffert N, Hossbach M, Heintzmann R, Achsel T, Luhrmann R. RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. Embo J 2004; 23:3000-9; PMID:15257298; http;//dx.doi.org/10.1038/sj.emboj.76600296 PubMed DOI PMC
Vithana EN, Abu-Safieh L, Allen MJ, Carey A, Papaioannou M, Chakarova C, Al-Maghtheh M, Ebenezer ND, Willis C, Moore AT, et al.. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell 2001; 8:375-81; PMID:11545739; http://dx.doi.org/10.1016/S1097-2765(01)00305-7 PubMed DOI
Rivolta C, McGee TL, Rio Frio T, Jensen RV, Berson EL, Dryja TP. Variation in retinitis pigmentosa-11 (PRPF31 or RP11) gene expression between symptomatic and asymptomatic patients with dominant RP11 mutations. Hum Mutation 2006; 27:644-53; PMID:16708387; http://dx.doi.org/1613901010.1002/humu.20325 PubMed DOI
Sato H, Wada Y, Itabashi T, Nakamura M, Kawamura M, Tamai M. Mutations in the pre-mRNA splicing gene, PRPF31, in Japanese families with autosomal dominant retinitis pigmentosa. Am J Ophthalmol 2005; 140:537-40; PMID:16139010; http://dx.doi.org/10.1016/j.ajo.2005.02.050 PubMed DOI
Wang L, Ribaudo M, Zhao K, Yu N, Chen Q, Sun Q, Wang L, Wang Q. Novel deletion in the pre-mRNA splicing gene PRPF31 causes autosomal dominant retinitis pigmentosa in a large Chinese family. Am J Med Genetics Part A 2003; 121A:235-9; PMID:12923864; http://dx.doi.org/1831759710.1002/ajmg.a.20224 PubMed DOI PMC
Sullivan LS, Bowne SJ, Seaman CR, Blanton SH, Lewis RA, Heckenlively JR, Birch DG, Hughbanks-Wheaton D, Daiger SP. Genomic rearrangements of the PRPF31 gene account for 2.5% of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Visual Sci 2006; 47:4579-88; PMID:17003455; http://dx.doi.org/1831759710.1167/iovs.06-0440 PubMed DOI PMC
Xia K, Zheng D, Pan Q, Liu Z, Xi X, Hu Z, Deng H, Liu X, Jiang D, Deng H, et al.. A novel PRPF31 splice-site mutation in a Chinese family with autosomal dominant retinitis pigmentosa. Mol Vision 2004; 10:361-5; PMID:1516209618317597 PubMed
Rio Frio T, Wade NM, Ransijn A, Berson EL, Beckmann JS, Rivolta C. Premature termination codons in PRPF31 cause retinitis pigmentosa via haploinsufficiency due to nonsense-mediated mRNA decay. J Clin Invest 2008; 118:1519-31; PMID:18317597; http://dx.doi.org/10.1172/JCI34211 PubMed DOI PMC
Ray P, Luo X, Rao EJ, Basha A, Woodruff EA 3rd, Wu JY. The splicing factor Prp31 is essential for photoreceptor development in Drosophila. Protein Cell 2010; 1:267-74; PMID:21203973; 10.100/s13238-010-0035-9 PubMed DOI PMC
Rose AM, Shah AZ, Venturini G, Krishna A, Chakravarti A, Rivolta C, Bhattacharya SS. Transcriptional regulation of PRPF31 gene expression by MSR1 repeat elements causes incomplete penetrance in retinitis pigmentosa. Scientific Reports 2016; 6:19450; PMID:26781568; http://dx.doi/10.1038/srep19450. PubMed DOI PMC
Vithana EN, Abu-Safieh L, Pelosini L, Winchester E, Hornan D, Bird AC, Hunt DM, Bustin SA, Bhattacharya SS. Expression of PRPF31 mRNA in patients with autosomal dominant retinitis pigmentosa: a molecular clue for incomplete penetrance? Invest Ophthalmol Visual Sci 2003; 44:4204-9; PMID:1450786212444105 PubMed
Deery EC, Vithana EN, Newbold RJ, Gallon VA, Bhattacharya SS, Warren MJ, Hunt DM, Wilkie SE. Disease mechanism for retinitis pigmentosa (RP11) caused by mutations in the splicing factor gene PRPF31. Hum Mol Genet 2002; 11:3209-19; PMID:12444105; http://dx.doi.org/10.1093/hmg/11.25.3209 PubMed DOI
Wilkie SE, Morris KJ, Bhattacharya SS, Warren MJ, Hunt DM. A study of the nuclear trafficking of the splicing factor protein PRPF31 linked to autosomal dominant retinitis pigmentosa (ADRP). Biochim Biophys Acta 2006; 1762:304-11; PMID:16427773; http://dx.doi.org/10.1016/j.bbadis.2005.12.004 PubMed DOI
Huranova M, Hnilicova J, Fleischer B, Cvackova Z, Stanek D. A mutation linked to retinitis pigmentosa in HPRP31 causes protein instability and impairs its interactions with spliceosomal snRNPs. Hum Mol Genet 2009; 18:2014-23; PMID:19293337; http://dx.doi.org/10.1093/hmg/ddp125. PubMed DOI
Wilkie SE, Vaclavik V, Wu H, Bujakowska K, Chakarova CF, Bhattacharya SS, Warren MJ, Hunt DM. Disease mechanism for retinitis pigmentosa (RP11) caused by missense mutations in the splicing factor gene PRPF31. Mol Vision 2008; 14:683-90; PMID:1843145519716790 PubMed PMC
Pena V, Jovin SM, Fabrizio P, Orlowski J, Bujnicki JM, Luhrmann R, Wahl MC. Common design principles in the spliceosomal RNA helicase Brr2 and in the Hel308 DNA helicase. Mol Cell 2009; 35:454-66; PMID:19716790; http;//dx.doi.org/10.1016/j.molcel.2009.08.006 PubMed DOI
Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol 2009; 16:731-9; PMID:19525970; http://dx.doi.org/10.1038/nsmb.1625 PubMed DOI PMC
Absmeier E, Wollenhaupt J, Mozaffari-Jovin S, Becke C, Lee CT, Preussner M, Heyd F, Urlaub H, Lührmann R, Santos KF, et al.. The large N-terminal region of the Brr2 RNA helicase guides productive spliceosome activation. Genes Dev 2015; 29:2576-87; PMID:26637280; http;//dx.doi.org/10.1101/gad.271528.115 PubMed DOI PMC
Small EC, Leggett SR, Winans AA, Staley JP. The EF-G-like GTPase Snu114p regulates spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase. Mol Cell 2006; 23:389-99; PMID:16885028; http://dx.doi.org/10.1016/j.molcel.2006.05.043 PubMed DOI PMC
Zhao C, Bellur DL, Lu S, Zhao F, Grassi MA, Bowne SJ, Sullivan LS, Daiger SP, Chen LJ, Pang CP, et al.. Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am J Hum Genet 2009; 85:617-27; PMID:19878916; http;//dx.doi.org/10.1016/j.ajhg.2009.09.020 PubMed DOI PMC
Cvackova Z, Mateju D, Stanek D. Retinitis pigmentosa mutations of SNRNP200 enhance cryptic splice-site recognition. Hum Mutation 2014; 35:308-17; PMID:24302620; http://dx.doi.org/2302902710.1002/humu.22481 PubMed DOI
Liu T, Jin X, Zhang X, Yuan H, Cheng J, Lee J, Zhang B, Zhang M, Wu J, Wang L, et al.. A novel missense SNRNP200 mutation associated with autosomal dominant retinitis pigmentosa in a Chinese family. PLoS One 2012; 7:e45464; PMID:23029027; http://dx.doi.org/10.1371/journal.pone.0045464 PubMed DOI PMC
Benaglio P, McGee TL, Capelli LP, Harper S, Berson EL, Rivolta C. Next generation sequencing of pooled samples reveals new SNRNP200 mutations associated with retinitis pigmentosa. Hum Mutation 2011; 32:E2246-58; PMID:21618346; http://dx.doi.org/1093120110.1002/humu.21485 PubMed DOI
Maita H, Harada Y, Nagakubo D, Kitaura H, Ikeda M, Tamai K, Takahashi K, Ariga H, Iguchi-Ariga SM. PAP-1, a novel target protein of phosphorylation by pim-1 kinase. Eur J Biochem 2000; 267:5168-78; PMID:10931201; http://dx.doi.org.10.1046/j.1432-1327.2000.01585.x PubMed DOI
Keen TJ, Hims MM, McKie AB, Moore AT, Doran RM, Mackey DA, Mansfield DC, Mueller RF, Bhattacharya SS, Bird AC, et al.. Mutations in a protein target of the Pim-1 kinase associated with the RP9 form of autosomal dominant retinitis pigmentosa. Eur J Hum Genet 2002; 10:245-9; PMID:12032732; http;//dx.doi.org/2604644510.1038/sj/ejhg/5200797 PubMed DOI
Wahl MC, Luhrmann R. SnapShot: Spliceosome Dynamics I. Cell 2015; 161:1474-e1; PMID:26046445; http://dx.doi.org/10.1016/j.cell.2015.05.050 PubMed DOI
Maita H, Kitaura H, Keen TJ, Inglehearn CF, Ariga H, Iguchi-Ariga SM. PAP-1, the mutated gene underlying the RP9 form of dominant retinitis pigmentosa, is a splicing factor. Exp Cell Res 2004; 300:283-96; PMID:15474994; http://dx.doi.org/10.1016/j.yexcr.2004.07.029 PubMed DOI
Sullivan LS, Bowne SJ, Birch DG, Hughbanks-Wheaton D, Heckenlively JR, Lewis RA, Garcia CA, Ruiz RS, Blanton SH, Northrup H, et al.. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. Invest Ophthalmol Visual Sci 2006; 47:3052-64; PMID:16799052; http://dx.doi.org/2542837310.1167/iovs.05-1443 PubMed DOI PMC
Bischof JM, Chiang AP, Scheetz TE, Stone EM, Casavant TL, Sheffield VC, Braun TA. Genome-wide identification of pseudogenes capable of disease-causing gene conversion. Hum Mutation 2006; 27:545-52; PMID:16671097; http://2542837310.1002/humu.20335 PubMed DOI
Cordin O, Hahn D, Alexander R, Gautam A, Saveanu C, Barrass JD, Beggs JD. Brr2p carboxy-terminal Sec63 domain modulates Prp16 splicing RNA helicase. Nucleic Acids Res 2014; 42:13897-910; PMID:25428373; http://dx.doi.org/10.1093/nar/gku1238. PubMed DOI PMC
Cordin O, Hahn D, Beggs JD. Structure, function and regulation of spliceosomal RNA helicases. Curr Opin Cell Biol 2012; 24:431-8; PMID:22464735; http://dx.doi.org/10.1016/j.ceb.2012.03.004. PubMed DOI
Hogg R, de Almeida RA, Ruckshanthi JP, O'Keefe RT. Remodeling of U2-U6 snRNA helix I during pre-mRNA splicing by Prp16 and the NineTeen Complex protein Cwc2. Nucleic Acids Res 2014; 42:8008-23; PMID:24848011; http://dx.doi.org/10.1093/nar/gku431. PubMed DOI PMC
Ajmal M, Khan MI, Neveling K, Khan YM, Azam M, Waheed NK, Hamel CP, Ben-Yosef T, De Baere E, Koenekoop RK, et al.. A missense mutation in the splicing factor gene DHX38 is associated with early-onset retinitis pigmentosa with macular coloboma. J Med Genetics 2014; 51:444-8; PMID:24737827; http://dx.doi.org/2128352010.1136/jmedgenet-2014-102316. PubMed DOI
Cao H, Wu J, Lam S, Duan R, Newnham C, Molday RS, Graziotto JJ, Pierce EA, Hu J. Temporal and tissue specific regulation of RP-associated splicing factor genes PRPF3, PRPF31 and PRPC8–implications in the pathogenesis of RP. PLoS One 2011; 6:e15860; PMID:21283520; http://dx.doi.org/10.1371/journal.pone.0015860. PubMed DOI PMC
Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C. Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components. PLoS Biol 2007; 5:e90; PMID:17388687; http://dx.doi.org/10.1371/journal.pbio.0050090 PubMed DOI PMC
Lotti F, Imlach WL, Saieva L, Beck ES, Hao le T, Li DK, Jiao W, Mentis GZ, Beattie CE, McCabe BD, et al.. An SMN-dependent U12 splicing event essential for motor circuit function. Cell 2012; 151:440-54; PMID:23063131; http://dx.doi.org/10.1016/j.cell.2012.09.012 PubMed DOI PMC
Winton MJ, Igaz LM, Wong MM, Kwong LK, Trojanowski JQ, Lee VM. Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem 2008; 283:13302-9; PMID:18305110; http://dx.doi.org/10.1074/jbc.M800342200. PubMed DOI PMC
Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, et al.. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 2015; 162:1066-77; PMID:26317470; http://dx.doi.org/10.1016/j.cell.2015.07.047. PubMed DOI
Shinde V, Kotla P, Strang C, Gorbatyuk M. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa. Cell Death Dis 2016; 7:e2085; PMID:26844699; http://dx.doi.org/10.1038/cddis.2015.325. PubMed DOI PMC
Martinez-Gimeno M, Gamundi MJ, Hernan I, Maseras M, Milla E, Ayuso C, García-Sandoval B, Beneyto M, Vilela C, Baiget M, et al.. Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Visual Sci 2003; 44:2171-7; PMID:1271465811468273 PubMed
Towns KV, Kipioti A, Long V, McKibbin M, Maubaret C, Vaclavik V, Ehsani P, Springell K, Kamal M, Ramesar RS, et al.. Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes. Hum Mutation 2010; 31:E1361-76; PMID:20232351; http://dx.doi.org/1146827310.1002/humu.21236. PubMed DOI
McKie AB, McHale JC, Keen TJ, Tarttelin EE, Goliath R, van Lith-Verhoeven JJ, Greenberg J, Ramesar RS, Hoyng CB, Cremers FP, et al.. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet 2001; 10:1555-62; PMID:11468273; http://dx.doi.org/10.1093/hmg/10.15.1555 PubMed DOI
Ziviello C, Simonelli F, Testa F, Anastasi M, Marzoli SB, Falsini B, Ghiglione D, Macaluso C, Manitto MP, Garrè C, et al.. Molecular genetics of autosomal dominant retinitis pigmentosa (ADRP): a comprehensive study of 43 Italian families. J Medical Genetics 2005; 42:e47; PMID:15994872; http://dx.doi.org/10.1136/jmg.2005.031682 PubMed DOI PMC
De Erkenez AC, Berson EL, Dryja TP. Novel Mutations in the PRPC8 Gene, Encoding a Pre-mRNA Splicing Factor in Patients with Autosomal Dominant Retinitis Pigmentosa. Invest Ophthalmol Visual Sci 2002; 43:791
Waseem NH, Vaclavik V, Webster A, Jenkins SA, Bird AC, Bhattacharya SS. Mutations in the gene coding for the pre-mRNA splicing factor, PRPF31, in patients with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Visual Sci 2007; 48:1330-4; PMID:17325180; http://dx.doi.org/10.1167/iovs.06-0963 PubMed DOI
Jin ZB, Mandai M, Yokota T, Higuchi K, Ohmori K, Ohtsuki F, Takakura S, Itabashi T, Wada Y, Akimoto M, et al.. Identifying pathogenic genetic background of simplex or multiplex retinitis pigmentosa patients: a large scale mutation screening study. J Medical Genetics 2008; 45:465-72; PMID:18310263; http://dx.doi.org/10.1136/jmg.2007.056416. PubMed DOI
Pan X, Chen X, Liu X, Gao X, Kang X, Xu Q, Chen X, Zhao K, Zhang X, Chu Q, et al.. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa. Mol Vision 2014; 20:770-9; PMID:24940031 PubMed PMC
Li N, Mei H, MacDonald IM, Jiao X, Hejtmancik JF. Mutations in ASCC3L1 on 2q11.2 are associated with autosomal dominant retinitis pigmentosa in a Chinese family. Invest Ophthalmol Visual Sci 2010; 51:1036-43; PMID:19710410; http://dx.doi.org/10.1167/iovs.09-3725. PubMed DOI PMC
Retinitis pigmentosa-linked mutation in DHX38 modulates its splicing activity
Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones