Retinitis pigmentosa-linked mutation in DHX38 modulates its splicing activity
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35385551
PubMed Central
PMC8985939
DOI
10.1371/journal.pone.0265742
PII: PONE-D-21-34796
Knihovny.cz E-zdroje
- MeSH
- DEAD-box RNA-helikasy * genetika MeSH
- lidé MeSH
- místa sestřihu RNA MeSH
- mutace MeSH
- retinopathia pigmentosa * genetika MeSH
- sestřih RNA MeSH
- sestřihové faktory * genetika MeSH
- spliceozomy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DEAD-box RNA-helikasy * MeSH
- DHX38 protein, human MeSH Prohlížeč
- místa sestřihu RNA MeSH
- sestřihové faktory * MeSH
Retinitis pigmentosa (RP) is a hereditary disease affecting tens of thousands of people world-wide. Here we analyzed the effect of an amino acid substitution in the RNA helicase DHX38 (Prp16) causing RP. DHX38 has been proposed as the helicase important for the 2nd step of splicing. We showed that DHX38 associates with key splicing factors involved in both splicing steps but did not find any evidence that the RP mutations changes DHX38 interaction profile with the spliceosome. We further downregulated DHX38 and monitored changes in splicing. We observed only minor perturbations of general splicing but detected modulation of ~70 alternative splicing events. Next, we probed DHX38 function in splicing of retina specific genes and found that FSCN2 splicing is dependent on DHX38. In addition, RHO splicing was inhibited specifically by expression of DHX38 RP variant. Finally, we showed that overexpression of DHX38 promotes usage of canonical as well as cryptic 5' splice sites in HBB splicing reporter. Together, our data show that DHX38 is a splicing factor that promotes splicing of cryptic splice sites and regulate alternative splicing. We further provide evidence that the RP-linked substitution G332D modulates DHX38 splicing activity.
Faculty of Science Charles University Prague Prague Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Cordin O, Hahn D, Beggs JD. Structure, function and regulation of spliceosomal RNA helicases. Curr Opin Cell Biol. 2012;24(3):431–8. Epub 2012/04/03. doi: 10.1016/j.ceb.2012.03.004 . PubMed DOI
Schwer B, Guthrie C. A conformational rearrangement in the spliceosome is dependent on PRP16 and ATP hydrolysis. EMBO J. 1992;11(13):5033–9. Epub 1992/12/01. ; PubMed Central PMCID: PMC556981. PubMed PMC
Schwer B, Guthrie C. A dominant negative mutation in a spliceosomal ATPase affects ATP hydrolysis but not binding to the spliceosome. Mol Cell Biol. 1992;12(8):3540–7. Epub 1992/08/01. doi: 10.1128/mcb.12.8.3540-3547.1992 ; PubMed Central PMCID: PMC364619. PubMed DOI PMC
Hogg R, de Almeida RA, Ruckshanthi JP, O’Keefe RT. Remodeling of U2-U6 snRNA helix I during pre-mRNA splicing by Prp16 and the NineTeen Complex protein Cwc2. Nucleic Acids Res. 2014;42(12):8008–23. Epub 2014/05/23. doi: 10.1093/nar/gku431 . PubMed DOI PMC
Tseng CK, Liu HL, Cheng SC. DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps. RNA. 2011;17(1):145–54. Epub 2010/11/26. doi: 10.1261/rna.2459611 ; PubMed Central PMCID: PMC3004056. PubMed DOI PMC
Mefford MA, Staley JP. Evidence that U2/U6 helix I promotes both catalytic steps of pre-mRNA splicing and rearranges in between these steps. RNA. 2009;15(7):1386–97. Epub 2009/05/22. doi: 10.1261/rna.1582609 . PubMed DOI PMC
Ohrt T, Odenwalder P, Dannenberg J, Prior M, Warkocki Z, Schmitzova J, et al. Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system. RNA. 2013;19(7):902–15. Epub 2013/05/21. doi: 10.1261/rna.039024.113 ; PubMed Central PMCID: PMC3683925. PubMed DOI PMC
Cordin O, Hahn D, Alexander R, Gautam A, Saveanu C, Barrass JD, et al. Brr2p carboxy-terminal Sec63 domain modulates Prp16 splicing RNA helicase. Nucleic Acids Res. 2014;42(22):13897–910. Epub 2014/11/28. doi: 10.1093/nar/gku1238 ; PubMed Central PMCID: PMC4267655. PubMed DOI PMC
Semlow DR, Staley JP. Staying on message: ensuring fidelity in pre-mRNA splicing. Trends in biochemical sciences. 2012;37(7):263–73. Epub 2012/05/09. doi: 10.1016/j.tibs.2012.04.001 ; PubMed Central PMCID: PMC3735133. PubMed DOI PMC
Burgess SM, Guthrie C. A mechanism to enhance mRNA splicing fidelity: the RNA-dependent ATPase Prp16 governs usage of a discard pathway for aberrant lariat intermediates. Cell. 1993;73(7):1377–91. doi: 0092-8674(93)90363-U [pii]. doi: 10.1016/0092-8674(93)90363-u . PubMed DOI
Villa T, Guthrie C. The Isy1p component of the NineTeen complex interacts with the ATPase Prp16p to regulate the fidelity of pre-mRNA splicing. Genes Dev. 2005;19(16):1894–904. Epub 2005/08/17. doi: 10.1101/gad.1336305 ; PubMed Central PMCID: PMC1186189. PubMed DOI PMC
Semlow DR, Blanco MR, Walter NG, Staley JP. Spliceosomal DEAH-Box ATPases Remodel Pre-mRNA to Activate Alternative Splice Sites. Cell. 2016;164(5):985–98. Epub 2016/02/27. doi: 10.1016/j.cell.2016.01.025 ; PubMed Central PMCID: PMC4979991. PubMed DOI PMC
Koodathingal P, Novak T, Piccirilli JA, Staley JP. The DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5’ splice site cleavage during pre-mRNA splicing. Mol Cell. 2010;39(3):385–95. Epub 2010/08/14. doi: 10.1016/j.molcel.2010.07.014 ; PubMed Central PMCID: PMC3722364. PubMed DOI PMC
Bessonov S, Anokhina M, Will CL, Urlaub H, Luhrmann R. Isolation of an active step I spliceosome and composition of its RNP core. Nature. 2008;452(7189):846–50. [pii] doi: 10.1038/nature06842 . PubMed DOI
Bessonov S, Anokhina M, Krasauskas A, Golas MM, Sander B, Will CL, et al. Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. RNA. 2010;16(12):2384–403. Epub 2010/10/29. doi: 10.1261/rna.2456210 ; PubMed Central PMCID: PMC2995400. PubMed DOI PMC
Hegele A, Kamburov A, Grossmann A, Sourlis C, Wowro S, Weimann M, et al. Dynamic protein-protein interaction wiring of the human spliceosome. Mol Cell. 2012;45(4):567–80. Epub 2012/03/01. doi: 10.1016/j.molcel.2011.12.034 . PubMed DOI
Ortlepp D, Laggerbauer B, Mullner S, Achsel T, Kirschbaum B, Luhrmann R. The mammalian homologue of Prp16p is overexpressed in a cell line tolerant to Leflunomide, a new immunoregulatory drug effective against rheumatoid arthritis. RNA. 1998;4(8):1007–18. Epub 1998/08/13. doi: 10.1017/s1355838298980554 ; PubMed Central PMCID: PMC1369677. PubMed DOI PMC
Zhou Z, Reed R. Human homologs of yeast prp16 and prp17 reveal conservation of the mechanism for catalytic step II of pre-mRNA splicing. EMBO J. 1998;17(7):2095–106. Epub 1998/06/06. doi: 10.1093/emboj/17.7.2095 ; PubMed Central PMCID: PMC1170554. PubMed DOI PMC
Ruzickova S, Stanek D. Mutations in spliceosomal proteins and retina degeneration. RNA biology. 2017;14(5):544–52. doi: 10.1080/15476286.2016.1191735 ; PubMed Central PMCID: PMC5449078. PubMed DOI PMC
Krausova M, Stanek D. snRNP proteins in health and disease. Semin Cell Dev Biol. 2018;79:92–102. Epub 2017/10/19. doi: 10.1016/j.semcdb.2017.10.011 . PubMed DOI
Ajmal M, Khan MI, Neveling K, Khan YM, Azam M, Waheed NK, et al. A missense mutation in the splicing factor gene DHX38 is associated with early-onset retinitis pigmentosa with macular coloboma. Journal of medical genetics. 2014;51(7):444–8. Epub 2014/04/17. doi: 10.1136/jmedgenet-2014-102316 . PubMed DOI
Latif Z, Chakchouk I, Schrauwen I, Lee K, Santos-Cortez RLP, Abbe I, et al. Confirmation of the Role of DHX38 in the Etiology of Early-Onset Retinitis Pigmentosa. Investigative ophthalmology & visual science. 2018;59(11):4552–7. Epub 2018/09/13. doi: 10.1167/iovs.18-23849 ; PubMed Central PMCID: PMC6133250. PubMed DOI PMC
Malinova A, Cvackova Z, Mateju D, Horejsi Z, Abeza C, Vandermoere F, et al. Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. J Cell Biol. 2017;216(6):1579–96. doi: 10.1083/jcb.201701165 ; PubMed Central PMCID: PMC5461031. PubMed DOI PMC
Huranova M, Hnilicova J, Fleischer B, Cvackova Z, Stanek D. A mutation linked to retinitis pigmentosa in HPRP31 causes protein instability and impairs its interactions with spliceosomal snRNPs. Hum Mol Genet. 2009;18(11):2014–23. doi: 10.1093/hmg/ddp125 PubMed PMID: Huranova2009. PubMed DOI
Tanackovic G, Ransijn A, Thibault P, Abou Elela S, Klinck R, Berson EL, et al. PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum Mol Genet. 2011;20(11):2116–30. Epub 2011/03/08. doi: 10.1093/hmg/ddr094 ; PubMed Central PMCID: PMC3090192. PubMed DOI PMC
Gonzalez-Santos JM, Cao H, Duan RC, Hu J. Mutation in the splicing factor Hprp3p linked to retinitis pigmentosa impairs interactions within the U4/U6 snRNP complex. Hum Mol Genet. 2008;17(2):225–39. doi: ddm300 [pii] doi: 10.1093/hmg/ddm300 . PubMed DOI PMC
Linder B, Hirmer A, Gal A, Ruther K, Bolz HJ, Winkler C, et al. Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa. PLoS ONE. 2014;9(11):e111754. Epub 2014/11/11. doi: 10.1371/journal.pone.0111754 ; PubMed Central PMCID: PMC4226509. PubMed DOI PMC
Cvackova Z, Mateju D, Stanek D. Retinitis Pigmentosa Mutations of SNRNP200 Enhance Cryptic Splice-Site Recognition. Human mutation. 2014;35(3):308–17. Epub 2013/12/05. doi: 10.1002/humu.22481 . PubMed DOI
Yuan L, Kawada M, Havlioglu N, Tang H, Wu JY. Mutations in PRPF31 inhibit pre-mRNA splicing of rhodopsin gene and cause apoptosis of retinal cells. J Neurosci. 2005;25(3):748–57. doi: 10.1523/JNEUROSCI.2399-04.2005 . PubMed DOI PMC
Mordes D, Yuan L, Xu L, Kawada M, Molday RS, Wu JY. Identification of photoreceptor genes affected by PRPF31 mutations associated with autosomal dominant retinitis pigmentosa. Neurobiology of Disease. 2007;26(2):291–300. doi: 10.1016/j.nbd.2006.08.026 PubMed PMID: Mordes2007. PubMed DOI PMC
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. Epub 2015/03/10. doi: 10.1038/nmeth.3317 ; PubMed Central PMCID: PMC4655817. PubMed DOI PMC
Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al. Ensembl 2020. Nucleic Acids Res. 2020;48(D1):D682–D8. Epub 2019/11/07. doi: 10.1093/nar/gkz966 ; PubMed Central PMCID: PMC7145704. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology. 2014;15(12):550. Epub 2014/12/18. doi: 10.1186/s13059-014-0550-8 ; PubMed Central PMCID: PMC4302049. PubMed DOI PMC
Mancini E, Rabinovich A, Iserte J, Yanovsky M, Chernomoretz A. Corrigendum to: ASpli: Integrative analysis of splicing landscapes through RNA-Seq assays. Bioinformatics. 2021. Epub 2021/06/11. doi: 10.1093/bioinformatics/btab345 . PubMed DOI
Carter MS, Doskow J, Morris P, Li S, Nhim RP, Sandstedt S, et al. A regulatory mechanism that detects premature nonsense codons in T-cell receptor transcripts in vivo is reversed by protein synthesis inhibitors in vitro. J Biol Chem. 1995;270(48):28995–9003. Epub 1995/12/01. doi: 10.1074/jbc.270.48.28995 . PubMed DOI
Klimesova K, Vojackova J, Radivojevic N, Vandermoere F, Bertrand E, Verheggen C, et al. TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation. Nat Commun. 2021;12(1):3646. Epub 2021/06/17. doi: 10.1038/s41467-021-23934-y ; PubMed Central PMCID: PMC8206348. PubMed DOI PMC
Vijayakumari D, Sharma AK, Bawa PS, Kumar R, Srinivasan S, Vijayraghavan U. Early splicing functions of fission yeast Prp16 and its unexpected requirement for gene Silencing is governed by intronic features. RNA biology. 2019;16(6):754–69. Epub 2019/02/28. doi: 10.1080/15476286.2019.1585737 ; PubMed Central PMCID: PMC6546409. PubMed DOI PMC