Solid Lipid Nanoparticles Coated with Glucosylated poly(2-oxazoline)s: A Supramolecular Toolbox Approach
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39779305
PubMed Central
PMC11815865
DOI
10.1021/acs.biomac.4c01052
Knihovny.cz E-zdroje
- MeSH
- hydrofobní a hydrofilní interakce MeSH
- lidé MeSH
- lipidy * chemie MeSH
- nanočástice * chemie MeSH
- nosiče léků chemie MeSH
- oxazoly * chemie MeSH
- polymery * chemie MeSH
- přenašeč glukosy typ 1 metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipidy * MeSH
- nosiče léků MeSH
- oxazoly * MeSH
- poly(2-oxazoline) MeSH Prohlížeč
- polymery * MeSH
- přenašeč glukosy typ 1 MeSH
- SLC2A1 protein, human MeSH Prohlížeč
Multifunctional polymers are interesting substances for the formulation of drug molecules that cannot be administered in their pure form due to their pharmacokinetic profiles or side effects. Polymer-drug formulations can enhance pharmacological properties or create tissue specificity by encapsulating the drug into nanocontainers, or stabilizing nanoparticles for drug transport. We present the synthesis of multifunctional poly(2-ethyl-2-oxazoline-co-2-glyco-2-oxazoline)s containing two reactive end groups, and an additional hydrophobic anchor at one end of the molecule. These polymers were successfully used to stabilize (solid) lipid nanoparticles ((S)LNP) consisting of tetradecan-1-ol and cholesterol with their hydrophobic anchor. While the pure polymers interacted with GLUT1-expressing cell lines mainly based on their physicochemical properties, especially via interactions of the hydrophobic anchor with membranous compartments of the cells, LNP-cell interactions hinted toward an influence of the glucosylation on particle-cell interactions. The presented LNP are therefore promising systems for the delivery of drugs into GLUT1-expressing cell lines.
Institute of Macromolecular Chemistry CAS Heyrovského nám 2 Praha 6 162 06 Czech Republic
Institute of Organic Chemistry and Biochemistry CAS Flemingovo nám 2 Praha 6 166 10 Czech Republic
Institute of Scientific Instruments CAS Královopolská 147 Brno 612 00 Czech Republic
Zobrazit více v PubMed
Shin M. D.; Shukla S.; Chung Y. H.; Beiss V.; Chan S. K.; Ortega-Rivera O. A.; Wirth D. M.; Chen A.; Sack M.; Pokorski J. K.; Steinmetz N. F. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 2020, 15 (8), 646–655. 10.1038/s41565-020-0737-y. PubMed DOI
Zhao Z.; Ukidve A.; Kim J.; Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020, 181 (1), 151–167. 10.1016/j.cell.2020.02.001. PubMed DOI
Allen T. M.; Cullis P. R. Drug Delivery Systems: Entering the Mainstream. Science 2004, 303 (5665), 1818–1822. 10.1126/science.1095833. PubMed DOI
Mitchell M. J.; Billingsley M. M.; Haley R. M.; Wechsler M. E.; Peppas N. A.; Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discovery 2021, 20 (2), 101–124. 10.1038/s41573-020-0090-8. PubMed DOI PMC
Friedl J. D.; Nele V.; De Rosa G.; Bernkop-Schnürch A.; Bioinert A. Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Adv. Funct. Mater. 2021, 31 (34), 2103347.10.1002/adfm.202103347. DOI
Albuquerque L. J. C.; Sincari V.; Jäger A.; Kucka J.; Humajova J.; Pankrac J.; Paral P.; Heizer T.; Janouškova O.; Davidovich I.; Talmon Y.; Pouckova P.; Štěpánek P.; Sefc L.; Hruby M.; Giacomelli F. C.; Jäger E. pH-responsive polymersome-mediated delivery of doxorubicin into tumor sites enhances the therapeutic efficacy and reduces cardiotoxic effects. J. Controlled Release 2021, 332, 529–538. 10.1016/j.jconrel.2021.03.013. PubMed DOI
Simon L.; Lapinte V.; Lionnard L.; Marcotte N.; Morille M.; Aouacheria A.; Kissa K.; Devoisselle J. M.; Bégu S. Polyoxazolines based lipid nanocapsules for topical delivery of antioxidants. Int. J. Pharm. 2020, 579, 119126.10.1016/j.ijpharm.2020.119126. PubMed DOI
Ekladious I.; Colson Y. L.; Grinstaff M. W. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discovery 2019, 18 (4), 273–294. 10.1038/s41573-018-0005-0. PubMed DOI
Cabral H.; Miyata K.; Osada K.; Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem. Rev. 2018, 118 (14), 6844–6892. 10.1021/acs.chemrev.8b00199. PubMed DOI
Loukotová L.; Švec P.; Groborz O.; Heizer T.; Beneš H.; Raabová H.; Bělinová T.; Herynek V.; Hrubý M. Direct Comparison of Analogous Amphiphilic Gradient and Block Polyoxazolines. Macromolecules 2021, 54 (17), 8182–8194. 10.1021/acs.macromol.0c02674. DOI
Quader S.; Cabral H.; Mochida Y.; Ishii T.; Liu X.; Toh K.; Kinoh H.; Miura Y.; Nishiyama N.; Kataoka K. Selective intracellular delivery of proteasome inhibitors through pH-sensitive polymeric micelles directed to efficient antitumor therapy. J. Controlled Release 2014, 188, 67–77. 10.1016/j.jconrel.2014.05.048. PubMed DOI
Elter J. K.; Eichhorn J.; Ringleb M.; Schacher F. H. Amine-containing diblock terpolymers via AROP: a versatile method for the generation of multifunctional micelles. Polym. Chem. 2021, 12 (27), 3900–3916. 10.1039/D1PY00666E. DOI
Zou Y.; Ito S.; Yoshino F.; Suzuki Y.; Zhao L.; Komatsu N. Polyglycerol Grafting Shields Nanoparticles from Protein Corona Formation to Avoid Macrophage Uptake. ACS Nano 2020, 14 (6), 7216–7226. 10.1021/acsnano.0c02289. PubMed DOI
Smolkova B.; Dusinska M.; Gabelova A. Nanomedicine and epigenome. Possible health risks. Food Chem. Toxicol. 2017, 109, 780–796. 10.1016/j.fct.2017.07.020. PubMed DOI
Wang L.; Yan L.; Liu J.; Chen C.; Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal. Chem. 2018, 90 (1), 589–614. 10.1021/acs.analchem.7b04765. PubMed DOI
Tenchov R.; Bird R.; Curtze A. E.; Zhou Q. Lipid Nanoparticles–From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15 (11), 16982–17015. 10.1021/acsnano.1c04996. PubMed DOI
Xu L.; Wang X.; Liu Y.; Yang G.; Falconer R. J.; Zhao C.-X. Lipid Nanoparticles for Drug Delivery. Adv. Nanobiomed Res. 2022, 2 (2), 2100109.10.1002/anbr.202100109. DOI
Scioli Montoto S.; Muraca G.; Ruiz M. E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020, 7, 587997.10.3389/fmolb.2020.587997. PubMed DOI PMC
Brezaniova I.; Hruby M.; Kralova J.; Kral V.; Cernochova Z.; Cernoch P.; Slouf M.; Kredatusova J.; Stepanek P. Temoporfin-loaded 1-tetradecanol-based thermoresponsive solid lipid nanoparticles for photodynamic therapy. J. Controlled Release 2016, 241, 34–44. 10.1016/j.jconrel.2016.09.009. PubMed DOI
Nogueira S. S.; Schlegel A.; Maxeiner K.; Weber B.; Barz M.; Schroer M. A.; Blanchet C. E.; Svergun D. I.; Ramishetti S.; Peer D.; Langguth P.; Sahin U.; Haas H. Polysarcosine-Functionalized Lipid Nanoparticles for Therapeutic mRNA Delivery. ACS Appl. Nano Mater. 2020, 3 (11), 10634–10645. 10.1021/acsanm.0c01834. DOI
Cheng Q.; Wei T.; Farbiak L.; Johnson L. T.; Dilliard S. A.; Siegwart D. J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 2020, 15 (4), 313–320. 10.1038/s41565-020-0669-6. PubMed DOI PMC
Slor G.; Olea A. R.; Pujals S.; Tigrine A.; De La Rosa V. R.; Hoogenboom R.; Albertazzi L.; Amir R. J. Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks. Biomacromolecules 2021, 22 (3), 1197–1210. 10.1021/acs.biomac.0c01708. PubMed DOI PMC
Schöttler S.; Becker G.; Winzen S.; Steinbach T.; Mohr K.; Landfester K.; Mailänder V.; Wurm F. R. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 2016, 11 (4), 372–377. 10.1038/nnano.2015.330. PubMed DOI
Corzo C.; Meindl C.; Lochmann D.; Reyer S.; Salar-Behzadi S. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 3: Application of polyglycerol esters of fatty acids for the next generation of solid lipid nanoparticles. Eur. J. Pharm. Sci. Biopharm 2020, 152, 44–55. 10.1016/j.ejpb.2020.04.027. PubMed DOI
Mehnert W.; Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Delivery Rev. 2001, 47 (2), 165–196. 10.1016/S0169-409X(01)00105-3. PubMed DOI
Van Guyse J. F. R.; Abbasi S.; Toh K.; Nagorna Z.; Li J.; Dirisala A.; Quader S.; Uchida S.; Kataoka K. Facile Generation of Heterotelechelic Poly(2-Oxazoline)s Towards Accelerated Exploration of Poly(2-Oxazoline)-Based Nanomedicine. Angew. Chem., Int. Ed. 2024, 63 (27), e20240497210.1002/anie.202404972. PubMed DOI
Dilliard S. A.; Siegwart D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 2023, 8 (4), 282–300. 10.1038/s41578-022-00529-7. PubMed DOI PMC
Sanchez A. J. D. S.; Loughrey D.; Echeverri E. S.; Huayamares S. G.; Radmand A.; Paunovska K.; Hatit M.; Tiegreen K. E.; Santangelo P. J.; Dahlman J. E. Substituting Poly(ethylene glycol) Lipids with Poly(2-ethyl-2-oxazoline) Lipids Improves Lipid Nanoparticle Repeat Dosing. Adv. Healthcare Mater. 2024, 13 (17), 2304033.10.1002/adhm.202304033. PubMed DOI
Simon L.; Marcotte N.; Devoisselle J. M.; Begu S.; Lapinte V. Recent advances and prospects in nano drug delivery systems using lipopolyoxazolines. Int. J. Pharm. 2020, 585, 119536.10.1016/j.ijpharm.2020.119536. PubMed DOI
Hoang Thi T. T.; Pilkington E. H.; Nguyen D. H.; Lee J. S.; Park K. D.; Truong N. P. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers 2020, 12 (2), 298.10.3390/polym12020298. PubMed DOI PMC
Bruusgaard-Mouritsen M. A.; Johansen J. D.; Garvey L. H. Clinical manifestations and impact on daily life of allergy to polyethylene glycol (PEG) in ten patients. Clin. Exp. Allergy 2021, 51 (3), 463–470. 10.1111/cea.13822. PubMed DOI
Gangloff N.; Ulbricht J.; Lorson T.; Schlaad H.; Luxenhofer R. Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering. Chem. Rev. 2016, 116 (4), 1753–1802. 10.1021/acs.chemrev.5b00201. PubMed DOI
Zhang P.; Li M.; Xiao C.; Chen X. Stimuli-responsive polypeptides for controlled drug delivery. Chem. Commun. 2021, 57 (75), 9489–9503. 10.1039/D1CC04053G. PubMed DOI
Han S.-S.; Li Z.-Y.; Zhu J.-Y.; Han K.; Zeng Z.-Y.; Hong W.; Li W.-X.; Jia H.-Z.; Liu Y.; Zhuo R.-X.; Zhang X.-Z. Dual-pH Sensitive Charge-Reversal Polypeptide Micelles for Tumor-Triggered Targeting Uptake and Nuclear Drug Delivery. Small 2015, 11 (21), 2543–2554. 10.1002/smll.201402865. PubMed DOI
Chytil P.; Koziolová E.; Etrych T.; Ulbrich K. HPMA Copolymer–Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol. Biosci. 2018, 18 (1), 1700209.10.1002/mabi.201700209. PubMed DOI
Bludau H.; Czapar A. E.; Pitek A. S.; Shukla S.; Jordan R.; Steinmetz N. F. POxylation as an alternative stealth coating for biomedical applications. Eur. Polym. J. 2017, 88, 679–688. 10.1016/j.eurpolymj.2016.10.041. PubMed DOI PMC
Muljajew I.; Huschke S.; Ramoji A.; Cseresnyés Z.; Hoeppener S.; Nischang I.; Foo W.; Popp J.; Figge M. T.; Weber C.; Bauer M.; Schubert U. S.; Press A. T. Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of Backbone End Group Determine Liver Cell-Type Specificity. ACS Nano 2021, 15 (7), 12298–12313. 10.1021/acsnano.1c04213. PubMed DOI
Nemati Mahand S.; Aliakbarzadeh S.; Moghaddam A.; Salehi Moghaddam A.; Kruppke B.; Nasrollahzadeh M.; Khonakdar H. A. Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. Eur. Polym. J. 2022, 178, 111484.10.1016/j.eurpolymj.2022.111484. DOI
England R. M.; Hare J. I.; Kemmitt P. D.; Treacher K. E.; Waring M. J.; Barry S. T.; Alexander C.; Ashford M. Enhanced cytocompatibility and functional group content of poly(l-lysine) dendrimers by grafting with poly(oxazolines). Polym. Chem. 2016, 7 (28), 4609–4617. 10.1039/C6PY00478D. DOI
Glassner M.; Vergaelen M.; Hoogenboom R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polym. Int. 2018, 67 (1), 32–45. 10.1002/pi.5457. DOI
Jana S.; Hoogenboom R. Poly(2-oxazoline)s: a comprehensive overview of polymer structures and their physical properties-an update. Polym. Int. 2022, 71 (8), 935–949. 10.1002/pi.6426. DOI
Zhou M.; Qian Y.; Xie J.; Zhang W.; Jiang W.; Xiao X.; Chen S.; Dai C.; Cong Z.; Ji Z.; Shao N.; Liu L.; Wu Y.; Liu R. Poly(2-Oxazoline)-Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angew. Chem., Int. Ed. 2020, 59 (16), 6412–6419. 10.1002/anie.202000505. PubMed DOI
Takasu A.; Kojima H. Synthesis and ring-opening polymerizations of novel S-glycooxazolines. J. Polym. Sci. A Polym. Chem. 2010, 48 (24), 5953–5960. 10.1002/pola.24411. DOI
de la Rosa V. R.; Bauwens E.; Monnery B. D.; De Geest B. G.; Hoogenboom R. Fast and accurate partial hydrolysis of poly(2-ethyl-2-oxazoline) into tailored linear polyethylenimine copolymers. Polym. Chem. 2014, 5 (17), 4957–4964. 10.1039/C4PY00355A. DOI
Sedlacek O.; Janouskova O.; Verbraeken B.; Hoogenboom R. Straightforward Route to Superhydrophilic Poly(2-oxazoline)s via Acylation of Well-Defined Polyethylenimine. Biomacromolecules 2019, 20 (1), 222–230. 10.1021/acs.biomac.8b01366. PubMed DOI
Kempe K.; Weber C.; Babiuch K.; Gottschaldt M.; Hoogenboom R.; Schubert U. S. Responsive Glyco-poly(2-oxazoline)s: Synthesis, Cloud Point Tuning, and Lectin Binding. Biomacromolecules 2011, 12 (7), 2591–2600. 10.1021/bm2003847. PubMed DOI
Podevyn A.; Arys K.; de la Rosa V. R.; Glassner M.; Hoogenboom R. End-group functionalization of poly(2-oxazoline)s using methyl bromoacetate as initiator followed by direct amidation. Eur. Polym. J. 2019, 120, 109273.10.1016/j.eurpolymj.2019.109273. DOI
Chujo Y.; Ihara E.; Kure S.; Saegusa T. Synthesis of triethoxysilyl-terminated polyoxazolines and their cohydrolysis polymerization with tetraethoxysilane. Macromolecules 1993, 26 (21), 5681–5686. 10.1021/ma00073a023. DOI
Volet G.; Deschamps A.-C. L.; Amiel C. Association of hydrophobically α,ω-end-capped poly(2-methyl-2-oxazoline) in water. J. Polym. Sci., Part A:Polym. Chem. 2010, 48 (11), 2477–2485. 10.1002/pola.24019. DOI
He X.; Payne T. J.; Takanashi A.; Fang Y.; Kerai S. D.; Morrow J. P.; Al-Wassiti H.; Pouton C. W.; Kempe K. Tailored Monoacyl Poly(2-oxazoline)- and Poly(2-oxazine)-Lipids as PEG-Lipid Alternatives for Stabilization and Delivery of mRNA-Lipid Nanoparticles. Biomacromolecules 2024, 25 (7), 4591–4603. 10.1021/acs.biomac.4c00651. PubMed DOI
Wagner S.; Zensi A.; Wien S. L.; Tschickardt S. E.; Maier W.; Vogel T.; Worek F.; Pietrzik C. U.; Kreuter J.; von Briesen H. Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model. PLoS One 2012, 7 (3), e3256810.1371/journal.pone.0032568. PubMed DOI PMC
Yang T.; Mochida Y.; Liu X.; Zhou H.; Xie J.; Anraku Y.; Kinoh H.; Cabral H.; Kataoka K. Conjugation of glucosylated polymer chains to checkpoint blockade antibodies augments their efficacy and specificity for glioblastoma. Nat. Biomed. Eng. 2021, 5 (11), 1274–1287. 10.1038/s41551-021-00803-z. PubMed DOI
Anraku Y.; Kuwahara H.; Fukusato Y.; Mizoguchi A.; Ishii T.; Nitta K.; Matsumoto Y.; Toh K.; Miyata K.; Uchida S.; Nishina K.; Osada K.; Itaka K.; Nishiyama N.; Mizusawa H.; Yamasoba T.; Yokota T.; Kataoka K. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat. Commun. 2017, 8 (1), 1001.10.1038/s41467-017-00952-3. PubMed DOI PMC
Barnett J. E.; Holman G. D.; Munday K. A. Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochem. J. 1973, 131 (2), 211–221. 10.1042/bj1310211. PubMed DOI PMC
Min H. S.; Kim H. J.; Naito M.; Ogura S.; Toh K.; Hayashi K.; Kim B. S.; Fukushima S.; Anraku Y.; Miyata K.; Kataoka K. Systemic Brain Delivery of Antisense Oligonucleotides across the Blood–Brain Barrier with a Glucose-Coated Polymeric Nanocarrier. Angew. Chem., Int. Ed. 2020, 59 (21), 8173–8180. 10.1002/anie.201914751. PubMed DOI PMC
Soria-Martinez L.; Bauer S.; Giesler M.; Schelhaas S.; Materlik J.; Janus K.; Pierzyna P.; Becker M.; Snyder N. L.; Hartmann L.; Schelhaas M. Prophylactic Antiviral Activity of Sulfated Glycomimetic Oligomers and Polymers. J. Am. Chem. Soc. 2020, 142 (11), 5252–5265. 10.1021/jacs.9b13484. PubMed DOI
Stenzel M. H. Glycopolymers for Drug Delivery: Opportunities and Challenges. Macromolecules 2022, 55 (12), 4867–4890. 10.1021/acs.macromol.2c00557. DOI
Nishimura S. I.; Nagahori N.. 3.22 - Glycopolymers. In Comprehensive Glycoscience; Kamerling H., Ed.; Elsevier: Oxford, 2007; pp 453–476.
Milusev A.; Rieben R.; Sorvillo N. The Endothelial Glycocalyx: A Possible Therapeutic Target in Cardiovascular Disorders. Front. Cardiovasc. Med. 2022, 9, 897087.10.3389/fcvm.2022.897087. PubMed DOI PMC
Elter J. K.; Liščáková V.; Moravec O.; Vragović M.; Filipová M.; Štěpánek P.; Šácha P.; Hrubý M. Solid-Phase Synthesis as a Tool to Create Exactly Defined, Branched Polymer Vectors for Cell Membrane Targeting. Macromolecules 2024, 57 (3), 1050–1071. 10.1021/acs.macromol.3c02600. PubMed DOI PMC
Neděla V.; Tihlaříková E.; Cápal P.; Doležel J. Advanced environmental scanning electron microscopy reveals natural surface nano-morphology of condensed mitotic chromosomes in their native state. Sci. Rep. 2024, 14 (1), 12998.10.1038/s41598-024-63515-9. PubMed DOI PMC
Lobaz V.; Liščáková V.; Sedlák F.; Musil D.; Petrova S. L.; Šeděnková I.; Pánek J.; Kučka J.; Konefał R.; Tihlaříková E.; Neděla V.; Pankrác J.; Šefc L.; Hrubý M.; Šácha P.; Štěpánek P. Tuning polymer–blood and polymer–cytoplasm membrane interactions by manipulating the architecture of poly(2-oxazoline) triblock copolymers. Colloids Surf., B 2023, 231, 113564.10.1016/j.colsurfb.2023.113564. PubMed DOI
Hough L.; Jones J. K. N.; Magson M. S.; Bell F.; Braude E. A.; Fawcett J. S.; Smith G. H.; Smith F. E.; Boon W. R. Methylene Derivatives of D-Galactose and D-Glucose. J. Am. Chem. Soc. 1952, (0), 1524–1532.
Borges-González J.; García-Monzón I.; Martín T. Conformational Control of Tetrahydropyran-Based Hybrid Dipeptide Catalysts Improves Activity and Stereoselectivity. Adv. Synth. Catal. 2019, 361 (9), 2141–2147. 10.1002/adsc.201900247. DOI
Arai M. A.; Yamaguchi Y.; Ishibashi M. Total synthesis of agalloside, isolated from Aquilaria agallocha, by the 5-O-glycosylation of flavan. Org. Biomol. Chem. 2017, 15 (23), 5025–5032. 10.1039/C7OB01004D. PubMed DOI
Mansueto M.; Frey W.; Laschat S. Ionic Liquid Crystals Derived from Amino Acids. Chem.—Eur. J. 2013, 19 (47), 16058–16065. 10.1002/chem.201302319. PubMed DOI
Ke C.; Smaldone R. A.; Kikuchi T.; Li H.; Davis A. P.; Stoddart J. F. Quantitative Emergence of Hetero[4]rotaxanes by Template-Directed Click Chemistry. Angew. Chem., Int. Ed. 2013, 52 (1), 381–387. 10.1002/anie.201205087. PubMed DOI
Treitler D. S.; Leung S. How Dangerous Is Too Dangerous? A Perspective on Azide Chemistry. J. Org. Chem. 2022, 87 (17), 11293–11295. 10.1021/acs.joc.2c01402. PubMed DOI
Han S.-E.; Kang H.; Shim G. Y.; Suh M. S.; Kim S. J.; Kim J.-S.; Oh Y.-K. Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA. Int. J. Pharm. 2008, 353 (1), 260–269. 10.1016/j.ijpharm.2007.11.026. PubMed DOI
Toutchkine A.; Nalbant P.; Hahn K. M. Facile Synthesis of Thiol-Reactive Cy3 and Cy5 Derivatives with Enhanced Water Solubility. Bioconj. Chem. 2002, 13 (3), 387–391. 10.1021/bc015558q. PubMed DOI
Dussart-Gautheret J.; Deschamp J.; Monteil M.; Gager O.; Legigan T.; Migianu-Griffoni E.; Lecouvey M. Formation of 1-Hydroxymethylene-1,1-bisphosphinates through the Addition of a Silylated Phosphonite on Various Trivalent Derivatives. J. Org. Chem. 2020, 85 (22), 14559–14569. 10.1021/acs.joc.0c01182. PubMed DOI
Grabowska U.; MacManus D. A.; Biggadike K.; Bird M. I.; Davies S.; Gallagher T.; Hall L. D.; Vulfson E. N. Diastereoselective resolution of 6-substituted glycosides via enzymatic hydrolysis. Carbohydr. Res. 1997, 305 (3), 351–361. 10.1016/S0008-6215(97)00246-2. PubMed DOI
Plattner J. J.; Gless R. D.; Rapoport H. Synthesis of some DE and CDE ring analogs of camptothecin. J. Am. Chem. Soc. 1972, 94 (24), 8613–8615. 10.1021/ja00779a072. PubMed DOI
Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; Rueden C.; Saalfeld S.; Schmid B.; Tinevez J.-Y.; White D. J.; Hartenstein V.; Eliceiri K.; Tomancak P.; Cardona A. Fiji: an open-source platform for biological-image analysis. Nat. Methods 2012, 9 (7), 676–682. 10.1038/nmeth.2019. PubMed DOI PMC
Sezonenko T.; Qiu X.-P.; Winnik F. M.; Sato T. Dehydration, Micellization, and Phase Separation of Thermosensitive Polyoxazoline Star Block Copolymers in Aqueous Solution. Macromolecules 2019, 52 (3), 935–944. 10.1021/acs.macromol.8b02528. DOI
Waschinski C. J.; Tiller J. C. Poly(oxazoline)s with Telechelic Antimicrobial Functions. Biomacromolecules 2005, 6 (1), 235–243. 10.1021/bm049553i. PubMed DOI
El Asmar A.; Gimello O.; Morandi G.; Le Cerf D.; Lapinte V.; Burel F. Tuning the Thermo-Sensitivity of Micellar Systems through a Blending Approach. Macromolecules 2016, 49 (11), 4307–4315. 10.1021/acs.macromol.6b00455. DOI
Kujawa P.; Segui F.; Shaban S.; Diab C.; Okada Y.; Tanaka F.; Winnik F. M. Impact of End-Group Association and Main-Chain Hydration on the Thermosensitive Properties of Hydrophobically Modified Telechelic Poly(N-isopropylacrylamides) in Water. Macromolecules 2006, 39 (1), 341–348. 10.1021/ma051876z. DOI
Lefley J.; Varanaraja Z.; Drain B.; Huband S.; Beament J.; Becer C. R. Amphiphilic oligo(2-ethyl-2-oxazoline)s via straightforward synthesis and their self-assembly behaviour. Polym. Chem. 2023, 14 (43), 4890–4897. 10.1039/D3PY00809F. DOI
Volet G.; Chanthavong V.; Wintgens V.; Amiel C. Synthesis of Monoalkyl End-Capped Poly(2-methyl-2-oxazoline) and Its Micelle Formation in Aqueous Solution. Macromolecules 2005, 38 (12), 5190–5197. 10.1021/ma050407u. DOI
Rizzo W. B. Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function. Biochim. Biophys. Acta 2014, 1841 (3), 377–389. 10.1016/j.bbalip.2013.09.001. PubMed DOI PMC
Antonietti M.; Förster S. Vesicles and Liposomes: A Self-Assembly Principle Beyond Lipids. Adv. Mater. 2003, 15 (16), 1323–1333. 10.1002/adma.200300010. DOI
Rudolph T.; Crotty S.; Schubert U. S.; Schacher F. H. Star-shaped poly(2-ethyl-2-oxazoline) featuring a porphyrin core: synthesis and metal complexation. e-Polymers 2015, 15 (4), 227–235. 10.1515/epoly-2015-0041. DOI
Roy R.; Hohng S.; Ha T. A practical guide to single-molecule FRET. Nat. Methods 2008, 5 (6), 507–516. 10.1038/nmeth.1208. PubMed DOI PMC
Inukai K.; Shewan A. M.; Pascoe W. S.; Katayama S.; James D. E.; Oka Y. Carboxy Terminus of Glucose Transporter 3 Contains an Apical Membrane Targeting Domain. Mol. Endocrinol. 2004, 18 (2), 339–349. 10.1210/me.2003-0089. PubMed DOI
Cannistraci A.; Hascoet P.; Ali A.; Mundra P.; Clarke N. W.; Pavet V.; Marais R. MiR-378a inhibits glucose metabolism by suppressing GLUT1 in prostate cancer. Oncogene 2022, 41 (10), 1445–1455. 10.1038/s41388-022-02178-0. PubMed DOI PMC
Kinoh H.; Shibasaki H.; Liu X.; Yamasoba T.; Cabral H.; Kataoka K. Nanomedicines blocking adaptive signals in cancer cells overcome tumor TKI resistance. J. Controlled Release 2020, 321, 132–144. 10.1016/j.jconrel.2020.02.008. PubMed DOI
Jiang Z.; Liu H.; He H.; Yadava N.; Chambers J. J.; Thayumanavan S. Anionic Polymers Promote Mitochondrial Targeting of Delocalized Lipophilic Cations. Bioconj. Chem. 2020, 31 (5), 1344–1353. 10.1021/acs.bioconjchem.0c00079. PubMed DOI PMC