• This record comes from PubMed

Solid Lipid Nanoparticles Coated with Glucosylated poly(2-oxazoline)s: A Supramolecular Toolbox Approach

. 2025 Feb 10 ; 26 (2) : 861-882. [epub] 20250108

Language English Country United States Media print-electronic

Document type Journal Article

Multifunctional polymers are interesting substances for the formulation of drug molecules that cannot be administered in their pure form due to their pharmacokinetic profiles or side effects. Polymer-drug formulations can enhance pharmacological properties or create tissue specificity by encapsulating the drug into nanocontainers, or stabilizing nanoparticles for drug transport. We present the synthesis of multifunctional poly(2-ethyl-2-oxazoline-co-2-glyco-2-oxazoline)s containing two reactive end groups, and an additional hydrophobic anchor at one end of the molecule. These polymers were successfully used to stabilize (solid) lipid nanoparticles ((S)LNP) consisting of tetradecan-1-ol and cholesterol with their hydrophobic anchor. While the pure polymers interacted with GLUT1-expressing cell lines mainly based on their physicochemical properties, especially via interactions of the hydrophobic anchor with membranous compartments of the cells, LNP-cell interactions hinted toward an influence of the glucosylation on particle-cell interactions. The presented LNP are therefore promising systems for the delivery of drugs into GLUT1-expressing cell lines.

See more in PubMed

Shin M. D.; Shukla S.; Chung Y. H.; Beiss V.; Chan S. K.; Ortega-Rivera O. A.; Wirth D. M.; Chen A.; Sack M.; Pokorski J. K.; Steinmetz N. F. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 2020, 15 (8), 646–655. 10.1038/s41565-020-0737-y. PubMed DOI

Zhao Z.; Ukidve A.; Kim J.; Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020, 181 (1), 151–167. 10.1016/j.cell.2020.02.001. PubMed DOI

Allen T. M.; Cullis P. R. Drug Delivery Systems: Entering the Mainstream. Science 2004, 303 (5665), 1818–1822. 10.1126/science.1095833. PubMed DOI

Mitchell M. J.; Billingsley M. M.; Haley R. M.; Wechsler M. E.; Peppas N. A.; Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discovery 2021, 20 (2), 101–124. 10.1038/s41573-020-0090-8. PubMed DOI PMC

Friedl J. D.; Nele V.; De Rosa G.; Bernkop-Schnürch A.; Bioinert A. Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Adv. Funct. Mater. 2021, 31 (34), 2103347.10.1002/adfm.202103347. DOI

Albuquerque L. J. C.; Sincari V.; Jäger A.; Kucka J.; Humajova J.; Pankrac J.; Paral P.; Heizer T.; Janouškova O.; Davidovich I.; Talmon Y.; Pouckova P.; Štěpánek P.; Sefc L.; Hruby M.; Giacomelli F. C.; Jäger E. pH-responsive polymersome-mediated delivery of doxorubicin into tumor sites enhances the therapeutic efficacy and reduces cardiotoxic effects. J. Controlled Release 2021, 332, 529–538. 10.1016/j.jconrel.2021.03.013. PubMed DOI

Simon L.; Lapinte V.; Lionnard L.; Marcotte N.; Morille M.; Aouacheria A.; Kissa K.; Devoisselle J. M.; Bégu S. Polyoxazolines based lipid nanocapsules for topical delivery of antioxidants. Int. J. Pharm. 2020, 579, 119126.10.1016/j.ijpharm.2020.119126. PubMed DOI

Ekladious I.; Colson Y. L.; Grinstaff M. W. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discovery 2019, 18 (4), 273–294. 10.1038/s41573-018-0005-0. PubMed DOI

Cabral H.; Miyata K.; Osada K.; Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem. Rev. 2018, 118 (14), 6844–6892. 10.1021/acs.chemrev.8b00199. PubMed DOI

Loukotová L.; Švec P.; Groborz O.; Heizer T.; Beneš H.; Raabová H.; Bělinová T.; Herynek V.; Hrubý M. Direct Comparison of Analogous Amphiphilic Gradient and Block Polyoxazolines. Macromolecules 2021, 54 (17), 8182–8194. 10.1021/acs.macromol.0c02674. DOI

Quader S.; Cabral H.; Mochida Y.; Ishii T.; Liu X.; Toh K.; Kinoh H.; Miura Y.; Nishiyama N.; Kataoka K. Selective intracellular delivery of proteasome inhibitors through pH-sensitive polymeric micelles directed to efficient antitumor therapy. J. Controlled Release 2014, 188, 67–77. 10.1016/j.jconrel.2014.05.048. PubMed DOI

Elter J. K.; Eichhorn J.; Ringleb M.; Schacher F. H. Amine-containing diblock terpolymers via AROP: a versatile method for the generation of multifunctional micelles. Polym. Chem. 2021, 12 (27), 3900–3916. 10.1039/D1PY00666E. DOI

Zou Y.; Ito S.; Yoshino F.; Suzuki Y.; Zhao L.; Komatsu N. Polyglycerol Grafting Shields Nanoparticles from Protein Corona Formation to Avoid Macrophage Uptake. ACS Nano 2020, 14 (6), 7216–7226. 10.1021/acsnano.0c02289. PubMed DOI

Smolkova B.; Dusinska M.; Gabelova A. Nanomedicine and epigenome. Possible health risks. Food Chem. Toxicol. 2017, 109, 780–796. 10.1016/j.fct.2017.07.020. PubMed DOI

Wang L.; Yan L.; Liu J.; Chen C.; Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal. Chem. 2018, 90 (1), 589–614. 10.1021/acs.analchem.7b04765. PubMed DOI

Tenchov R.; Bird R.; Curtze A. E.; Zhou Q. Lipid Nanoparticles–From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15 (11), 16982–17015. 10.1021/acsnano.1c04996. PubMed DOI

Xu L.; Wang X.; Liu Y.; Yang G.; Falconer R. J.; Zhao C.-X. Lipid Nanoparticles for Drug Delivery. Adv. Nanobiomed Res. 2022, 2 (2), 2100109.10.1002/anbr.202100109. DOI

Scioli Montoto S.; Muraca G.; Ruiz M. E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020, 7, 587997.10.3389/fmolb.2020.587997. PubMed DOI PMC

Brezaniova I.; Hruby M.; Kralova J.; Kral V.; Cernochova Z.; Cernoch P.; Slouf M.; Kredatusova J.; Stepanek P. Temoporfin-loaded 1-tetradecanol-based thermoresponsive solid lipid nanoparticles for photodynamic therapy. J. Controlled Release 2016, 241, 34–44. 10.1016/j.jconrel.2016.09.009. PubMed DOI

Nogueira S. S.; Schlegel A.; Maxeiner K.; Weber B.; Barz M.; Schroer M. A.; Blanchet C. E.; Svergun D. I.; Ramishetti S.; Peer D.; Langguth P.; Sahin U.; Haas H. Polysarcosine-Functionalized Lipid Nanoparticles for Therapeutic mRNA Delivery. ACS Appl. Nano Mater. 2020, 3 (11), 10634–10645. 10.1021/acsanm.0c01834. DOI

Cheng Q.; Wei T.; Farbiak L.; Johnson L. T.; Dilliard S. A.; Siegwart D. J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 2020, 15 (4), 313–320. 10.1038/s41565-020-0669-6. PubMed DOI PMC

Slor G.; Olea A. R.; Pujals S.; Tigrine A.; De La Rosa V. R.; Hoogenboom R.; Albertazzi L.; Amir R. J. Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks. Biomacromolecules 2021, 22 (3), 1197–1210. 10.1021/acs.biomac.0c01708. PubMed DOI PMC

Schöttler S.; Becker G.; Winzen S.; Steinbach T.; Mohr K.; Landfester K.; Mailänder V.; Wurm F. R. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 2016, 11 (4), 372–377. 10.1038/nnano.2015.330. PubMed DOI

Corzo C.; Meindl C.; Lochmann D.; Reyer S.; Salar-Behzadi S. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 3: Application of polyglycerol esters of fatty acids for the next generation of solid lipid nanoparticles. Eur. J. Pharm. Sci. Biopharm 2020, 152, 44–55. 10.1016/j.ejpb.2020.04.027. PubMed DOI

Mehnert W.; Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Delivery Rev. 2001, 47 (2), 165–196. 10.1016/S0169-409X(01)00105-3. PubMed DOI

Van Guyse J. F. R.; Abbasi S.; Toh K.; Nagorna Z.; Li J.; Dirisala A.; Quader S.; Uchida S.; Kataoka K. Facile Generation of Heterotelechelic Poly(2-Oxazoline)s Towards Accelerated Exploration of Poly(2-Oxazoline)-Based Nanomedicine. Angew. Chem., Int. Ed. 2024, 63 (27), e20240497210.1002/anie.202404972. PubMed DOI

Dilliard S. A.; Siegwart D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 2023, 8 (4), 282–300. 10.1038/s41578-022-00529-7. PubMed DOI PMC

Sanchez A. J. D. S.; Loughrey D.; Echeverri E. S.; Huayamares S. G.; Radmand A.; Paunovska K.; Hatit M.; Tiegreen K. E.; Santangelo P. J.; Dahlman J. E. Substituting Poly(ethylene glycol) Lipids with Poly(2-ethyl-2-oxazoline) Lipids Improves Lipid Nanoparticle Repeat Dosing. Adv. Healthcare Mater. 2024, 13 (17), 2304033.10.1002/adhm.202304033. PubMed DOI

Simon L.; Marcotte N.; Devoisselle J. M.; Begu S.; Lapinte V. Recent advances and prospects in nano drug delivery systems using lipopolyoxazolines. Int. J. Pharm. 2020, 585, 119536.10.1016/j.ijpharm.2020.119536. PubMed DOI

Hoang Thi T. T.; Pilkington E. H.; Nguyen D. H.; Lee J. S.; Park K. D.; Truong N. P. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers 2020, 12 (2), 298.10.3390/polym12020298. PubMed DOI PMC

Bruusgaard-Mouritsen M. A.; Johansen J. D.; Garvey L. H. Clinical manifestations and impact on daily life of allergy to polyethylene glycol (PEG) in ten patients. Clin. Exp. Allergy 2021, 51 (3), 463–470. 10.1111/cea.13822. PubMed DOI

Gangloff N.; Ulbricht J.; Lorson T.; Schlaad H.; Luxenhofer R. Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering. Chem. Rev. 2016, 116 (4), 1753–1802. 10.1021/acs.chemrev.5b00201. PubMed DOI

Zhang P.; Li M.; Xiao C.; Chen X. Stimuli-responsive polypeptides for controlled drug delivery. Chem. Commun. 2021, 57 (75), 9489–9503. 10.1039/D1CC04053G. PubMed DOI

Han S.-S.; Li Z.-Y.; Zhu J.-Y.; Han K.; Zeng Z.-Y.; Hong W.; Li W.-X.; Jia H.-Z.; Liu Y.; Zhuo R.-X.; Zhang X.-Z. Dual-pH Sensitive Charge-Reversal Polypeptide Micelles for Tumor-Triggered Targeting Uptake and Nuclear Drug Delivery. Small 2015, 11 (21), 2543–2554. 10.1002/smll.201402865. PubMed DOI

Chytil P.; Koziolová E.; Etrych T.; Ulbrich K. HPMA Copolymer–Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol. Biosci. 2018, 18 (1), 1700209.10.1002/mabi.201700209. PubMed DOI

Bludau H.; Czapar A. E.; Pitek A. S.; Shukla S.; Jordan R.; Steinmetz N. F. POxylation as an alternative stealth coating for biomedical applications. Eur. Polym. J. 2017, 88, 679–688. 10.1016/j.eurpolymj.2016.10.041. PubMed DOI PMC

Muljajew I.; Huschke S.; Ramoji A.; Cseresnyés Z.; Hoeppener S.; Nischang I.; Foo W.; Popp J.; Figge M. T.; Weber C.; Bauer M.; Schubert U. S.; Press A. T. Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of Backbone End Group Determine Liver Cell-Type Specificity. ACS Nano 2021, 15 (7), 12298–12313. 10.1021/acsnano.1c04213. PubMed DOI

Nemati Mahand S.; Aliakbarzadeh S.; Moghaddam A.; Salehi Moghaddam A.; Kruppke B.; Nasrollahzadeh M.; Khonakdar H. A. Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. Eur. Polym. J. 2022, 178, 111484.10.1016/j.eurpolymj.2022.111484. DOI

England R. M.; Hare J. I.; Kemmitt P. D.; Treacher K. E.; Waring M. J.; Barry S. T.; Alexander C.; Ashford M. Enhanced cytocompatibility and functional group content of poly(l-lysine) dendrimers by grafting with poly(oxazolines). Polym. Chem. 2016, 7 (28), 4609–4617. 10.1039/C6PY00478D. DOI

Glassner M.; Vergaelen M.; Hoogenboom R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polym. Int. 2018, 67 (1), 32–45. 10.1002/pi.5457. DOI

Jana S.; Hoogenboom R. Poly(2-oxazoline)s: a comprehensive overview of polymer structures and their physical properties-an update. Polym. Int. 2022, 71 (8), 935–949. 10.1002/pi.6426. DOI

Zhou M.; Qian Y.; Xie J.; Zhang W.; Jiang W.; Xiao X.; Chen S.; Dai C.; Cong Z.; Ji Z.; Shao N.; Liu L.; Wu Y.; Liu R. Poly(2-Oxazoline)-Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angew. Chem., Int. Ed. 2020, 59 (16), 6412–6419. 10.1002/anie.202000505. PubMed DOI

Takasu A.; Kojima H. Synthesis and ring-opening polymerizations of novel S-glycooxazolines. J. Polym. Sci. A Polym. Chem. 2010, 48 (24), 5953–5960. 10.1002/pola.24411. DOI

de la Rosa V. R.; Bauwens E.; Monnery B. D.; De Geest B. G.; Hoogenboom R. Fast and accurate partial hydrolysis of poly(2-ethyl-2-oxazoline) into tailored linear polyethylenimine copolymers. Polym. Chem. 2014, 5 (17), 4957–4964. 10.1039/C4PY00355A. DOI

Sedlacek O.; Janouskova O.; Verbraeken B.; Hoogenboom R. Straightforward Route to Superhydrophilic Poly(2-oxazoline)s via Acylation of Well-Defined Polyethylenimine. Biomacromolecules 2019, 20 (1), 222–230. 10.1021/acs.biomac.8b01366. PubMed DOI

Kempe K.; Weber C.; Babiuch K.; Gottschaldt M.; Hoogenboom R.; Schubert U. S. Responsive Glyco-poly(2-oxazoline)s: Synthesis, Cloud Point Tuning, and Lectin Binding. Biomacromolecules 2011, 12 (7), 2591–2600. 10.1021/bm2003847. PubMed DOI

Podevyn A.; Arys K.; de la Rosa V. R.; Glassner M.; Hoogenboom R. End-group functionalization of poly(2-oxazoline)s using methyl bromoacetate as initiator followed by direct amidation. Eur. Polym. J. 2019, 120, 109273.10.1016/j.eurpolymj.2019.109273. DOI

Chujo Y.; Ihara E.; Kure S.; Saegusa T. Synthesis of triethoxysilyl-terminated polyoxazolines and their cohydrolysis polymerization with tetraethoxysilane. Macromolecules 1993, 26 (21), 5681–5686. 10.1021/ma00073a023. DOI

Volet G.; Deschamps A.-C. L.; Amiel C. Association of hydrophobically α,ω-end-capped poly(2-methyl-2-oxazoline) in water. J. Polym. Sci., Part A:Polym. Chem. 2010, 48 (11), 2477–2485. 10.1002/pola.24019. DOI

He X.; Payne T. J.; Takanashi A.; Fang Y.; Kerai S. D.; Morrow J. P.; Al-Wassiti H.; Pouton C. W.; Kempe K. Tailored Monoacyl Poly(2-oxazoline)- and Poly(2-oxazine)-Lipids as PEG-Lipid Alternatives for Stabilization and Delivery of mRNA-Lipid Nanoparticles. Biomacromolecules 2024, 25 (7), 4591–4603. 10.1021/acs.biomac.4c00651. PubMed DOI

Wagner S.; Zensi A.; Wien S. L.; Tschickardt S. E.; Maier W.; Vogel T.; Worek F.; Pietrzik C. U.; Kreuter J.; von Briesen H. Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model. PLoS One 2012, 7 (3), e3256810.1371/journal.pone.0032568. PubMed DOI PMC

Yang T.; Mochida Y.; Liu X.; Zhou H.; Xie J.; Anraku Y.; Kinoh H.; Cabral H.; Kataoka K. Conjugation of glucosylated polymer chains to checkpoint blockade antibodies augments their efficacy and specificity for glioblastoma. Nat. Biomed. Eng. 2021, 5 (11), 1274–1287. 10.1038/s41551-021-00803-z. PubMed DOI

Anraku Y.; Kuwahara H.; Fukusato Y.; Mizoguchi A.; Ishii T.; Nitta K.; Matsumoto Y.; Toh K.; Miyata K.; Uchida S.; Nishina K.; Osada K.; Itaka K.; Nishiyama N.; Mizusawa H.; Yamasoba T.; Yokota T.; Kataoka K. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat. Commun. 2017, 8 (1), 1001.10.1038/s41467-017-00952-3. PubMed DOI PMC

Barnett J. E.; Holman G. D.; Munday K. A. Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochem. J. 1973, 131 (2), 211–221. 10.1042/bj1310211. PubMed DOI PMC

Min H. S.; Kim H. J.; Naito M.; Ogura S.; Toh K.; Hayashi K.; Kim B. S.; Fukushima S.; Anraku Y.; Miyata K.; Kataoka K. Systemic Brain Delivery of Antisense Oligonucleotides across the Blood–Brain Barrier with a Glucose-Coated Polymeric Nanocarrier. Angew. Chem., Int. Ed. 2020, 59 (21), 8173–8180. 10.1002/anie.201914751. PubMed DOI PMC

Soria-Martinez L.; Bauer S.; Giesler M.; Schelhaas S.; Materlik J.; Janus K.; Pierzyna P.; Becker M.; Snyder N. L.; Hartmann L.; Schelhaas M. Prophylactic Antiviral Activity of Sulfated Glycomimetic Oligomers and Polymers. J. Am. Chem. Soc. 2020, 142 (11), 5252–5265. 10.1021/jacs.9b13484. PubMed DOI

Stenzel M. H. Glycopolymers for Drug Delivery: Opportunities and Challenges. Macromolecules 2022, 55 (12), 4867–4890. 10.1021/acs.macromol.2c00557. DOI

Nishimura S. I.; Nagahori N.. 3.22 - Glycopolymers. In Comprehensive Glycoscience; Kamerling H., Ed.; Elsevier: Oxford, 2007; pp 453–476.

Milusev A.; Rieben R.; Sorvillo N. The Endothelial Glycocalyx: A Possible Therapeutic Target in Cardiovascular Disorders. Front. Cardiovasc. Med. 2022, 9, 897087.10.3389/fcvm.2022.897087. PubMed DOI PMC

Elter J. K.; Liščáková V.; Moravec O.; Vragović M.; Filipová M.; Štěpánek P.; Šácha P.; Hrubý M. Solid-Phase Synthesis as a Tool to Create Exactly Defined, Branched Polymer Vectors for Cell Membrane Targeting. Macromolecules 2024, 57 (3), 1050–1071. 10.1021/acs.macromol.3c02600. PubMed DOI PMC

Neděla V.; Tihlaříková E.; Cápal P.; Doležel J. Advanced environmental scanning electron microscopy reveals natural surface nano-morphology of condensed mitotic chromosomes in their native state. Sci. Rep. 2024, 14 (1), 12998.10.1038/s41598-024-63515-9. PubMed DOI PMC

Lobaz V.; Liščáková V.; Sedlák F.; Musil D.; Petrova S. L.; Šeděnková I.; Pánek J.; Kučka J.; Konefał R.; Tihlaříková E.; Neděla V.; Pankrác J.; Šefc L.; Hrubý M.; Šácha P.; Štěpánek P. Tuning polymer–blood and polymer–cytoplasm membrane interactions by manipulating the architecture of poly(2-oxazoline) triblock copolymers. Colloids Surf., B 2023, 231, 113564.10.1016/j.colsurfb.2023.113564. PubMed DOI

Hough L.; Jones J. K. N.; Magson M. S.; Bell F.; Braude E. A.; Fawcett J. S.; Smith G. H.; Smith F. E.; Boon W. R. Methylene Derivatives of D-Galactose and D-Glucose. J. Am. Chem. Soc. 1952, (0), 1524–1532.

Borges-González J.; García-Monzón I.; Martín T. Conformational Control of Tetrahydropyran-Based Hybrid Dipeptide Catalysts Improves Activity and Stereoselectivity. Adv. Synth. Catal. 2019, 361 (9), 2141–2147. 10.1002/adsc.201900247. DOI

Arai M. A.; Yamaguchi Y.; Ishibashi M. Total synthesis of agalloside, isolated from Aquilaria agallocha, by the 5-O-glycosylation of flavan. Org. Biomol. Chem. 2017, 15 (23), 5025–5032. 10.1039/C7OB01004D. PubMed DOI

Mansueto M.; Frey W.; Laschat S. Ionic Liquid Crystals Derived from Amino Acids. Chem.—Eur. J. 2013, 19 (47), 16058–16065. 10.1002/chem.201302319. PubMed DOI

Ke C.; Smaldone R. A.; Kikuchi T.; Li H.; Davis A. P.; Stoddart J. F. Quantitative Emergence of Hetero[4]rotaxanes by Template-Directed Click Chemistry. Angew. Chem., Int. Ed. 2013, 52 (1), 381–387. 10.1002/anie.201205087. PubMed DOI

Treitler D. S.; Leung S. How Dangerous Is Too Dangerous? A Perspective on Azide Chemistry. J. Org. Chem. 2022, 87 (17), 11293–11295. 10.1021/acs.joc.2c01402. PubMed DOI

Han S.-E.; Kang H.; Shim G. Y.; Suh M. S.; Kim S. J.; Kim J.-S.; Oh Y.-K. Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA. Int. J. Pharm. 2008, 353 (1), 260–269. 10.1016/j.ijpharm.2007.11.026. PubMed DOI

Toutchkine A.; Nalbant P.; Hahn K. M. Facile Synthesis of Thiol-Reactive Cy3 and Cy5 Derivatives with Enhanced Water Solubility. Bioconj. Chem. 2002, 13 (3), 387–391. 10.1021/bc015558q. PubMed DOI

Dussart-Gautheret J.; Deschamp J.; Monteil M.; Gager O.; Legigan T.; Migianu-Griffoni E.; Lecouvey M. Formation of 1-Hydroxymethylene-1,1-bisphosphinates through the Addition of a Silylated Phosphonite on Various Trivalent Derivatives. J. Org. Chem. 2020, 85 (22), 14559–14569. 10.1021/acs.joc.0c01182. PubMed DOI

Grabowska U.; MacManus D. A.; Biggadike K.; Bird M. I.; Davies S.; Gallagher T.; Hall L. D.; Vulfson E. N. Diastereoselective resolution of 6-substituted glycosides via enzymatic hydrolysis. Carbohydr. Res. 1997, 305 (3), 351–361. 10.1016/S0008-6215(97)00246-2. PubMed DOI

Plattner J. J.; Gless R. D.; Rapoport H. Synthesis of some DE and CDE ring analogs of camptothecin. J. Am. Chem. Soc. 1972, 94 (24), 8613–8615. 10.1021/ja00779a072. PubMed DOI

Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; Rueden C.; Saalfeld S.; Schmid B.; Tinevez J.-Y.; White D. J.; Hartenstein V.; Eliceiri K.; Tomancak P.; Cardona A. Fiji: an open-source platform for biological-image analysis. Nat. Methods 2012, 9 (7), 676–682. 10.1038/nmeth.2019. PubMed DOI PMC

Sezonenko T.; Qiu X.-P.; Winnik F. M.; Sato T. Dehydration, Micellization, and Phase Separation of Thermosensitive Polyoxazoline Star Block Copolymers in Aqueous Solution. Macromolecules 2019, 52 (3), 935–944. 10.1021/acs.macromol.8b02528. DOI

Waschinski C. J.; Tiller J. C. Poly(oxazoline)s with Telechelic Antimicrobial Functions. Biomacromolecules 2005, 6 (1), 235–243. 10.1021/bm049553i. PubMed DOI

El Asmar A.; Gimello O.; Morandi G.; Le Cerf D.; Lapinte V.; Burel F. Tuning the Thermo-Sensitivity of Micellar Systems through a Blending Approach. Macromolecules 2016, 49 (11), 4307–4315. 10.1021/acs.macromol.6b00455. DOI

Kujawa P.; Segui F.; Shaban S.; Diab C.; Okada Y.; Tanaka F.; Winnik F. M. Impact of End-Group Association and Main-Chain Hydration on the Thermosensitive Properties of Hydrophobically Modified Telechelic Poly(N-isopropylacrylamides) in Water. Macromolecules 2006, 39 (1), 341–348. 10.1021/ma051876z. DOI

Lefley J.; Varanaraja Z.; Drain B.; Huband S.; Beament J.; Becer C. R. Amphiphilic oligo(2-ethyl-2-oxazoline)s via straightforward synthesis and their self-assembly behaviour. Polym. Chem. 2023, 14 (43), 4890–4897. 10.1039/D3PY00809F. DOI

Volet G.; Chanthavong V.; Wintgens V.; Amiel C. Synthesis of Monoalkyl End-Capped Poly(2-methyl-2-oxazoline) and Its Micelle Formation in Aqueous Solution. Macromolecules 2005, 38 (12), 5190–5197. 10.1021/ma050407u. DOI

Rizzo W. B. Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function. Biochim. Biophys. Acta 2014, 1841 (3), 377–389. 10.1016/j.bbalip.2013.09.001. PubMed DOI PMC

Antonietti M.; Förster S. Vesicles and Liposomes: A Self-Assembly Principle Beyond Lipids. Adv. Mater. 2003, 15 (16), 1323–1333. 10.1002/adma.200300010. DOI

Rudolph T.; Crotty S.; Schubert U. S.; Schacher F. H. Star-shaped poly(2-ethyl-2-oxazoline) featuring a porphyrin core: synthesis and metal complexation. e-Polymers 2015, 15 (4), 227–235. 10.1515/epoly-2015-0041. DOI

Roy R.; Hohng S.; Ha T. A practical guide to single-molecule FRET. Nat. Methods 2008, 5 (6), 507–516. 10.1038/nmeth.1208. PubMed DOI PMC

Inukai K.; Shewan A. M.; Pascoe W. S.; Katayama S.; James D. E.; Oka Y. Carboxy Terminus of Glucose Transporter 3 Contains an Apical Membrane Targeting Domain. Mol. Endocrinol. 2004, 18 (2), 339–349. 10.1210/me.2003-0089. PubMed DOI

Cannistraci A.; Hascoet P.; Ali A.; Mundra P.; Clarke N. W.; Pavet V.; Marais R. MiR-378a inhibits glucose metabolism by suppressing GLUT1 in prostate cancer. Oncogene 2022, 41 (10), 1445–1455. 10.1038/s41388-022-02178-0. PubMed DOI PMC

Kinoh H.; Shibasaki H.; Liu X.; Yamasoba T.; Cabral H.; Kataoka K. Nanomedicines blocking adaptive signals in cancer cells overcome tumor TKI resistance. J. Controlled Release 2020, 321, 132–144. 10.1016/j.jconrel.2020.02.008. PubMed DOI

Jiang Z.; Liu H.; He H.; Yadava N.; Chambers J. J.; Thayumanavan S. Anionic Polymers Promote Mitochondrial Targeting of Delocalized Lipophilic Cations. Bioconj. Chem. 2020, 31 (5), 1344–1353. 10.1021/acs.bioconjchem.0c00079. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...