Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser

. 2014 ; 9 (1) : 591. [epub] 20141028

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25386106

In this work, we describe laser modification of poly(methyl methacrylate) films doped with Fast Red ITR, followed by dopant exclusion from the bulk polymer. By this procedure, the polymer can be modified under extremely mild conditions. Creation of surface ordered structure was observed already after application of 15 pulses and 12 mJ cm(-2) fluence. Formation of grating begins in the hottest places and tends to form concentric semi-circles around them. The mechanism of surface ordered structure formation is attributed to polymer ablation, which is more pronounced in the place of higher light intensity. The smoothness of the underlying substrate plays a key role in the quality of surface ordered structure. Most regular grating structures were obtained on polymer films deposited on atomically 'flat' Si substrates. After laser patterning, the dopant was removed from the polymer by soaking the film in methanol.

Zobrazit více v PubMed

Csete M, Eberle R, Pietralla M, Marti O, Bor Z. Attenuated total reflection measurements on poly-carbonate surfaces structured by laser illumination. Appl Surf Sci. 2003;208:474–480.

Yim EKF, Reano RM, Pang SW, Yee AF, Chen CS, Leong KW. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials. 2005;26:5405–5413. doi: 10.1016/j.biomaterials.2005.01.058. PubMed DOI PMC

Slepicka P, Chaloupka A, Sajdl P, Heitz J, Hnatowicz V, Svorcik V. Angle dependent laser nanopatterning of poly(ethylene terephthalate) surfaces. Appl Surf Sci. 2011;257:6021–6025. doi: 10.1016/j.apsusc.2011.01.107. DOI

Lasagni AF, Shao P, Hendricks JL, Shaw CM, Martin DC, Das S. Direct fabrication of periodic patterns with hierarchical sub-wavelength structures on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) thin films using femtosecond laser interference patterning. Appl Surf Sci. 2010;256:1708–1713. doi: 10.1016/j.apsusc.2009.09.099. DOI

Slepicka P, Nedela O, Sajdl P, Kolska Z, Svorcik V. Polyethylene naphthalate as an excellent candidate for ripple nanopatterning. Appl Surf Sci. 2013;285:885–892.

Rebollar E, de Aldana JRV, Martın-Fabiani I, Hernandez M, Rueda DR, Ezquerra TA, Domingo C, Moreno P, Castillejo M. Assessment of femtosecond laser induced periodic surface structures on polymer films. Phys Chem Chem Phys. 2013;15:11287–11298. doi: 10.1039/c3cp51523k. PubMed DOI

Birnbaum M. Semiconductor surface damage produced by ruby lasers. J Appl Phys. 1965;36:3688–3689. doi: 10.1063/1.1703071. DOI

Sipe JE, Young JF, Preston JS, van Driel HM. Laser-induced periodic surface structure. I. Theory. Phys Rev B. 1983;27:1141–1154. doi: 10.1103/PhysRevB.27.1141. DOI

Wochnowski C, Eldin MAS, Metev S. UV-laser-assisted degradation of poly(methylmethacrylate) Polym Degrad Stabil. 2005;89:252–264. doi: 10.1016/j.polymdegradstab.2004.11.024. DOI

Zheng HY, Tan TT, Zhou W. Studies of KrF laser-induced long periodic structures on polyimide. Opt Lasers Eng. 2009;47:180–185. doi: 10.1016/j.optlaseng.2008.06.015. DOI

Bauerle D. Laser Processing and Chemistry. 3. Berlin: Springer; 2000.

Slepicka P, Rebollar E, Heitz J, Svorcik V. Gold coatings on polyethyleneterephthalate nano-patterned by F2 laser irradiation. Appl Surf Sci. 2008;254:3585–3590. doi: 10.1016/j.apsusc.2007.11.045. DOI

Slepicka P, Siegel J, Lyutakov O, Svorcik V. Nanostructuring of polymer surface stimulated by laser beam for electronics and tissue engineering. Chem Listy. 2012;106:875–883.

Young JF, Sipe JE, Preston JS, van Driel HM. Laser‒induced periodic surface damage and radiation remnants. Appl Phys Lett. 1982;41:261–264. doi: 10.1063/1.93494. DOI

Guillermin M, Garrelie F, Sanner N, Audouard E, Soder H. Single- and multi-pulse formation of surface structures under static femtosecond irradiation. Appl Surf Sci. 2007;53:8075–8079.

Rebollar E, de Aldana JRV, Perez-Hernandez JA, Ezquerra TA, Moreno P, Castillejo M. Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films. Appl Phys Lett. 2012;100:041106–041109. doi: 10.1063/1.3679103. DOI

Mitchell P. A perspective on protein microarrays. Nature Biotech. 2002;20:225–229. doi: 10.1038/nbt0302-225. PubMed DOI

Tsakalakos L. Nanostructures for photovoltaics. Mat Sci Eng R. 2008;62:175–189. doi: 10.1016/j.mser.2008.06.002. DOI

Wilson SA, Jourdain RPJ, Zhang Q, Dorey RA, Bowen CR. New materials for micro-scale sensors and actuators: an engineering review. Mater Sci Eng R Rep. 2007;56:1–129. doi: 10.1016/j.mser.2007.03.001. DOI

Ling QD, Liaw DJ, Zhu C, Chan DSH, Kang ET, Neoh KG. Polymer electronic memories: materials, devices and mechanisms. Prog Polym Sci. 2008;33:917–978. doi: 10.1016/j.progpolymsci.2008.08.001. DOI

Tuma J, Lyutakov O, Huttel I, Svorcik V. Reversible patterning of poly (methylmethacrylate) doped with disperse Red 1 by laser scanning. J Appl Phys. 2013;114:093107–093109.

Lyutakov O, Tuma J, Huttel I, Prajzler V, Siegel J, Svorcik V. Polymer surface patterning by laser scanning. Appl Phys B Laser Optic. 2013;110:539–549. doi: 10.1007/s00340-012-5291-3. DOI

Lippert T, Yabe A, Wokaun A. Laser ablation of doped polymer systems. Adv Mater. 1997;9:105–119. doi: 10.1002/adma.19970090203. DOI

Athanassiou A, Lassithiotaki M, Anglos D, Georgiou S, Fotakis C. A comparative study of the photochemical modifications effected in the UV laser ablation of doped polymer substrates. Appl Surf Sci. 2000;154–155:89–94.

Schmidt H, Ihlemann J, Wolff-Rottke B, Luther K, Troe J. Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained. J Appl Phys. 1998;83:5458–5468. doi: 10.1063/1.367377. DOI

Fujiwara H, Hayashi T, Fukumura H, Masuhara H. Each dopant can absorb more than ten photons: transient absorbance measurement at excitation laser wavelength in polymer ablation. Appl Phys Lett. 1994;64:2451–2453. doi: 10.1063/1.111596. DOI

Kawamura Y, Toyoda K, Namba S. Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser. Appl Phys Lett. 1982;40:374–375. doi: 10.1063/1.93108. DOI

Davis GM, Gower MC, Fotakis C, Efthimiopoulos T, Argyrakis P. Spectroscopic studies of ArF laser photoablation of PMMA. Appl Phys A. 1985;36:27–30. doi: 10.1007/BF00616456. DOI

Küper S, Stuke M. UV-excimer-laser ablation of polymethylmethacrylate at 248 nm: characterization of incubation sites with Fourier transform IR- and UV-spectroscopy. Appl Phys A. 1989;49:211–215.

Preuß S, Langowski H-C, Damm T, Stuke M. Incubation/ablation patterning of polymer surfaces with sub-μm edge definition for optical storage devices. Appl Phys A. 1992;54:360–362. doi: 10.1007/BF00324202. DOI

Serafetinides AA, Makropoulou M, Fabrikesi E, Spyratou E, Bacharis C, Thomson RR, Kar AK. Ultrashort laser ablation of PMMA and intraocular lenses. Appl Phys A. 2008;93:111–116.

Baset F, Villafranca A, Guay J-M, Bhardwaj R. Femtosecond laser induced porosity in poly-methyl methacrylate. Appl Surf Sci. 2013;282:729–734.

Itaya A, Kurahashi A, Masuhara H, Taniguchi Y, Kiguchi M. Fluorescence characterization of ablated polymeric materials: poly(methyl methacrylate) doped with 1-ethylpyrene. J Appl Phys. 1990;67:2240–2244. doi: 10.1063/1.345538. DOI

Srinivasan R, Braren B. Ultraviolet laser ablation and etching of polymethyl methacrylate sensitized with an organic dopant. Appl Phys A. 1988;45:289–292. doi: 10.1007/BF00617933. DOI

Masuhara H, Hiraoka H, Domen K. Dopant-induced ablation of poly(methyl methacrylate) by a 308-nm excimer laser. Macromolecules. 1987;20:450–452. doi: 10.1021/ma00168a044. DOI

Küper S, Modaressi S, Stuke M. Photofragmentation pathways of a PMMA model compound under UV excimer laser ablation conditions. J Phys Chem. 1990;94:7514–7518. doi: 10.1021/j100382a038. DOI

D'Couto GC, Babu SV, Egitto FD, Davis CR. Excimer laser ablation of polyimide‒doped poly(tetrafluoroethylene) at 248 and 308 nm. J Appl Phys. 1993;74:5972–5980. doi: 10.1063/1.355210. DOI

Wochnowski C, Metev S, Sepold G. UV-laser-assisted modification of the optical properties of poly(methyl methacrylate) Appl Surf Sci. 2000;154:706–711.

Baum A, Scully PJ, Perrie W, Liu D, Lucarini VJ. High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings. J Opt Soc Am B. 2010;27:107–111. doi: 10.1364/JOSAB.27.000107. DOI

Srinivasan R, Braren B, Dreyfus RW, Hadel L, Seeger DE. Mechanism of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193 and 248 nm. J Opt Soc Am B. 1986;3:785–791. doi: 10.1364/JOSAB.3.000785. DOI

Svorcik V, Lyutakov O, Huttel I. Thickness dependence of refractive index and optical gap of PMMA layers prepared under electrical field. J Mat Sci: Mater Electron. 2008;19:363–367. doi: 10.1007/s10854-007-9344-z. DOI

Lyutakov O, Huttel I, Siegel J, Svorcik V. Regular surface grating on doped polymer induced by laser scanning. Appl Phys Lett. 2009;95:173103–173106. doi: 10.1063/1.3254210. DOI

Lyutakov O, Huttel I, Svorcik V. Thermal stability of refractive index of polymethylmethacrylate layers prepared under electrical field. J Mater Sci Mater Electron. 2007;4:457–461.

Palik ED. Handbook of Optical Constants of Solids. Amsterdam: Elsevier; 2007. Available online.

Heitz J, Arenholz E, Bauerle D, Sauerbrey R, Phillips HM. Femtosecond excimer-laser-induced structure formation on polymers. Appl Phys A. 1994;59:289–293. doi: 10.1007/BF00348232. DOI

Kalachyova Y, Lyutakov O, Prajzler V, Tuma J, Siegel J, Svorcik V. Porphyrin migration and aggregation in a poly(methylmethacrylate) matrix. Polym Compos. 2014;35:665–670. doi: 10.1002/pc.22709. DOI

Prajzler V, Huttel I, Lyutakov O, Oswald J, Machovic V, Jerabek V. Optical properties of PMMA doped with erbium(III) and ytterbium(III) complexes. Polym Eng Sci. 2009;49:1814–18174. doi: 10.1002/pen.21418. DOI

Kalachyova Y, Lyutakov O, Solovyev A, Slepicka P, Svorcik V. Surface morphology and optical properties of porphyrin/Au and Au/porphyrin/Au systems. Nanoscale Res Lett. 2013;8:547–557. doi: 10.1186/1556-276X-8-547. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Application of Plasmon-Induced Lithography for Creation of a Residual-Free Pattern and Simple Surface Modifications

. 2019 Mar 31 ; 4 (3) : 5534-5539. [epub] 20190319

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...