Application of Plasmon-Induced Lithography for Creation of a Residual-Free Pattern and Simple Surface Modifications
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31459713
PubMed Central
PMC6648495
DOI
10.1021/acsomega.8b03039
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Here, we propose a plasmon-induced redistribution of a thin polymer layer as a unique way for a residual layer-free lithographic approach. In particular, we demonstrate an ultrafast area-selective fabrication method using a low-intensity visible laser irradiation to direct the polymer mass flow, under the plasmon-active substrates. Plasmon-supported substrates were created by thermal annealing of Ag thin films and covered by thin polystyrene layers. Then, laser beam writing (LBW) was applied to introduce a surface tension gradient through the local plasmon heating. As a result, polystyrene was completely removed from the irradiated place, without any residual layer. The proposed approach does not require any additional development steps, such as solvent or plasma treatment. To demonstrate the advantages of the proposed technique, we implemented the LBW-patterned structures for further spatially selective surface functionalization, including the metal deposition, spontaneous thiol grafting, and electrochemical deposition of ordered polypyrrole array.
Zobrazit více v PubMed
Guo L. J. Nanoimprint Lithography: Methods and Material Requirements. Adv. Mater. 2007, 19, 495–513. 10.1002/adma.200600882. DOI
Falconnet D.; Csucs G.; Grandin H. M.; Textor M. Surface Engineering Approaches to Micropattern Surfaces for Cell-Based Assays. Biomaterials 2006, 27, 3044–3063. 10.1016/j.biomaterials.2005.12.024. PubMed DOI
Katzenstein J. M.; Janes D. W.; Cushen J. D.; Hira N. B.; McGuffin D. L.; Prisco N. A.; Ellison C. J. Patterning by Photochemically Directing the Marangoni Effect. ACS Macro Lett. 2012, 1, 1150–1154. 10.1021/mz300400p. PubMed DOI
Kim C. B.; Janes D. W.; Zhou S. X.; Dulaney A. R.; Ellison C. J. Bidirectional Control of Flow in Thin Polymer Films by Photochemically Manipulating Surface Tension. Chem. Mater. 2015, 27, 4538–4545. 10.1021/acs.chemmater.5b01744. DOI
Lyutakov O.; Tuma J.; Prajzler V.; Huttel I.; Hnatowicz V.; Švorčík V. Preparation of Rib Channel Waveguides on Polymer in Electric Field. Thin Solid Films 2010, 519, 1452–1457. 10.1016/j.tsf.2010.08.019. DOI
Schäffer E.; Thurn-Albrecht T.; Russell T. P.; Steiner U. Electrohydrodynamic Instabilities in Polymer Films. Europhys. Lett. 2001, 53, 518–524. 10.1209/epl/i2001-00183-2. DOI
Lin Z.; Kerle T.; Russell T. P.; Schäffer E.; Steiner U. Electric Field Induced Dewetting at Polymer/Polymer Interfaces. Macromolecules 2002, 35, 6255–6262. 10.1021/ma020311p. DOI
Amarandei G.; Beltrame P.; Clancy I.; O’Dwyer C.; Arshak A.; Steiner U.; Corcoran D.; Thiele U. Pattern Formation Induced by an Electric Field in a Polymer–air–polymer Thin Film System. Soft Matter 2012, 8, 6333–6349. 10.1039/c2sm25273b. DOI
Goldberg-Oppenheimer P.; Steiner U. Rapid Electrohydrodynamic Lithography Using Low-Viscosity Polymers. Small 2010, 6, 1248–1254. 10.1002/smll.201000060. PubMed DOI
Scriven L. E.; Sternling C. V. The Marangoni Effects. Nature 1960, 187, 186–188. 10.1038/187186a0. DOI
Kim H.; Boulogne F.; Um E.; Jacobi I.; Button E.; Stone H. A. Controlled Uniform Coating from the Interplay of Marangoni Flows and Surface-Adsorbed Macromolecules. Phys. Rev. Lett. 2016, 116, 124501.10.1103/physrevlett.116.124501. PubMed DOI
Du F.; Felts J. R.; Xie X.; Song J.; Li Y.; Rosenberger M. R.; Islam A. E.; Jin S. H.; Dunham S. N.; Zhang C.; Wilson W. L.; Huang Y.; King W. P.; Rogers J. A. Laser-Induced Nanoscale Thermocapillary Flow for Purification of Aligned Arrays of Single-Walled Carbon Nanotubes. ACS Nano 2014, 8, 12641–12649. 10.1021/nn505566r. PubMed DOI
Chou S. Y.; Zhuang L.; Guo L. Lithographically Induced Self-Construction of Polymer Microstructures for Resistless Patterning. Appl. Phys. Lett. 1999, 75, 1004–1006. 10.1063/1.124579. DOI
Schäffer E.; Harkema S.; Roerdink M.; Blossey R.; Steiner U. Thermomechanical Lithography: Pattern Replication Using a Temperature Gradient Driven Instability. Adv. Mater. 2003, 15, 514–517. 10.1002/adma.200390119. DOI
Singh G.; Batra S.; Zhang R.; Yuan H.; Yager K. G.; Cakmak M.; Berry B.; Karim A. Large-Scale Roll-to-Roll Fabrication of Vertically Oriented Block Copolymer Thin Films. ACS Nano 2013, 7, 5291–5299. 10.1021/nn401094s. PubMed DOI
Okada K.; Tokudome Y.; Makiura R.; Konstas K.; Malfatti L.; Innocenzi P.; Ogawa H.; Kanaya T.; Falcaro P.; Takahashi M. Micropattern Formation by Molecular Migration via UV-Induced Dehydration of Block Copolymers. Adv. Funct. Mater. 2014, 24, 2801–2809. 10.1002/adfm.201302812. DOI
Zhang A.; Bai H.; Li L. Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films. Chem. Rev. 2015, 115, 9801–9868. 10.1021/acs.chemrev.5b00069. PubMed DOI
Singer J. P.; Lin P.-T.; Kooi S. E.; Kimerling L. C.; Michel J.; Thomas E. L. Direct-Write Thermocapillary Dewetting of Polymer Thin Films by a Laser-Induced Thermal Gradient. Adv. Mater. 2013, 25, 6100–6105. 10.1002/adma.201302777. PubMed DOI
Singer J. P. Thermocapillary Approaches to the Deliberate Patterning of Polymers. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1649–1668. 10.1002/polb.24298. DOI
Singer J. P.; Kooi S. E.; Thomas E. L. Focused Laser-Induced Marangoni Dewetting for Patterning Polymer Thin Films. J. Polym. Sci., Part B: Polym. Phys. 2015, 54, 225–236. 10.1002/polb.23906. DOI
Lee J.-H.; Singer J. P.; Thomas E. L. Micro-/Nanostructured Mechanical Metamaterials. Adv. Mater. 2012, 24, 4782–4810. 10.1002/adma.201201644. PubMed DOI
Singer J. P.; Gotrik K. W.; Lee J.-H.; Kooi S. E.; Ross C. A.; Thomas E. L. Alignment and Reordering of a Block Copolymer by Solvent-Enhanced Thermal Laser Direct Write. Polymer 2014, 55, 1875–1882. 10.1016/j.polymer.2014.02.028. DOI
Jacobs A. G.; Liedel C.; Peng H.; Wang L.; Smilgies D.-M.; Ober C. K.; Thompson M. O. Kinetics of Block Copolymer Phase Segregation during Sub-Millisecond Transient Thermal Annealing. Macromolecules 2016, 49, 6462–6470. 10.1021/acs.macromol.6b00698. DOI
Majewski P. W.; Yager K. G. Millisecond Ordering of Block Copolymer Films via Photothermal Gradients. ACS Nano 2015, 9, 3896–3906. 10.1021/nn5071827. PubMed DOI
Majewski P. W.; Rahman A.; Black C. T.; Yager K. G. Arbitrary Lattice Symmetries via Block Copolymer Nanomeshes. Nat. Commun. 2015, 6, 7448.10.1038/ncomms8448. PubMed DOI PMC
Lyutakov O.; Huttel I.; Siegel J.; Švorčík V. Regular Surface Grating on Doped Polymer Induced by Laser Scanning. Appl. Phys. Lett. 2009, 95, 173103.10.1063/1.3254210. DOI
Elashnikov R.; Fitl P.; Svorcik V.; Lyutakov O. Patterning of Ultrathin Polymethylmethacrylate Films by in-Situ Photodirecting of the Marangoni Flow. Appl. Surf. Sci. 2017, 394, 562–568. 10.1016/j.apsusc.2016.10.074. DOI
Elashnikov R.; Trelin A.; Otta J.; Fitl P.; Mares D.; Jerabek V.; Svorcik V.; Lyutakov O. Laser Patterning of Transparent Polymers Assisted by Plasmon Excitation. Soft Matter 2018, 14, 4860–4865. 10.1039/c8sm00418h. PubMed DOI
Maity S.; Bochinski J. R.; Clarke L. I. Metal Nanoparticles Acting as Light-Activated Heating Elements within Composite Materials. Adv. Funct. Mater. 2012, 22, 5259–5270. 10.1002/adfm.201201051. DOI
Maity S.; Wu W.-C.; Tracy J. B.; Clarke L. I.; Bochinski J. R. Nanoscale Steady-State Temperature Gradients within Polymer Nanocomposites Undergoing Continuous-Wave Photothermal Heating from Gold Nanorods. Nanoscale 2017, 9, 11605–11618. 10.1039/c7nr04613h. PubMed DOI
Švanda J.; Kalachyova Y.; Slepička P.; Švorčík V.; Lyutakov O. Smart Component for Switching of Plasmon Resonance by External Electric Field. ACS Appl. Mater. Interfaces 2015, 8, 225–231. 10.1021/acsami.5b08334. PubMed DOI
Gomez N.; Lee J. Y.; Nickels J. D.; Schmidt C. E. Micropatterned Polypyrrole: A Combination of Electrical and Topographical Characteristics for the Stimulation of Cells. Adv. Funct. Mater. 2007, 17, 1645–1653. 10.1002/adfm.200600669. PubMed DOI PMC
Yager K. G.; Barrett C. J. All-optical patterning of azo polymer films. Curr. Opin. Solid State Mater. Sci. 2001, 5, 487–494. 10.1016/s1359-0286(02)00020-7. DOI
Kim C. B.; Wistrom J. C.; Ha H.; Zhou S. X.; Katsumata R.; Jones A. R.; Janes D. W.; Miller K. M.; Ellison C. J. Marangoni instability driven surface relief grating in an azobenzene-containing polymer film. Macromolecules 2016, 49, 7069–7076. 10.1021/acs.macromol.6b01848. DOI
Kalachyova Y.; Lyutakov O.; Slepicka P.; Elashnikov R.; Svorcik V. Preparation of periodic surface structures on doped poly (methyl metacrylate) films by irradiation with KrF excimer laser. Nanoscale Res. Lett. 2014, 9, 591.10.1186/1556-276x-9-591. PubMed DOI PMC
Bian S.; Williams J. M.; Kim D. Y.; Li L.; Balasubramanian S.; Kumar J.; Tripathy S. Photoinduced surface deformations on azobenzene polymer films. J. Appl. Phys. 1999, 86, 4498–4508. 10.1063/1.371393. DOI