Application of Plasmon-Induced Lithography for Creation of a Residual-Free Pattern and Simple Surface Modifications

. 2019 Mar 31 ; 4 (3) : 5534-5539. [epub] 20190319

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31459713

Here, we propose a plasmon-induced redistribution of a thin polymer layer as a unique way for a residual layer-free lithographic approach. In particular, we demonstrate an ultrafast area-selective fabrication method using a low-intensity visible laser irradiation to direct the polymer mass flow, under the plasmon-active substrates. Plasmon-supported substrates were created by thermal annealing of Ag thin films and covered by thin polystyrene layers. Then, laser beam writing (LBW) was applied to introduce a surface tension gradient through the local plasmon heating. As a result, polystyrene was completely removed from the irradiated place, without any residual layer. The proposed approach does not require any additional development steps, such as solvent or plasma treatment. To demonstrate the advantages of the proposed technique, we implemented the LBW-patterned structures for further spatially selective surface functionalization, including the metal deposition, spontaneous thiol grafting, and electrochemical deposition of ordered polypyrrole array.

Zobrazit více v PubMed

Guo L. J. Nanoimprint Lithography: Methods and Material Requirements. Adv. Mater. 2007, 19, 495–513. 10.1002/adma.200600882. DOI

Falconnet D.; Csucs G.; Grandin H. M.; Textor M. Surface Engineering Approaches to Micropattern Surfaces for Cell-Based Assays. Biomaterials 2006, 27, 3044–3063. 10.1016/j.biomaterials.2005.12.024. PubMed DOI

Katzenstein J. M.; Janes D. W.; Cushen J. D.; Hira N. B.; McGuffin D. L.; Prisco N. A.; Ellison C. J. Patterning by Photochemically Directing the Marangoni Effect. ACS Macro Lett. 2012, 1, 1150–1154. 10.1021/mz300400p. PubMed DOI

Kim C. B.; Janes D. W.; Zhou S. X.; Dulaney A. R.; Ellison C. J. Bidirectional Control of Flow in Thin Polymer Films by Photochemically Manipulating Surface Tension. Chem. Mater. 2015, 27, 4538–4545. 10.1021/acs.chemmater.5b01744. DOI

Lyutakov O.; Tuma J.; Prajzler V.; Huttel I.; Hnatowicz V.; Švorčík V. Preparation of Rib Channel Waveguides on Polymer in Electric Field. Thin Solid Films 2010, 519, 1452–1457. 10.1016/j.tsf.2010.08.019. DOI

Schäffer E.; Thurn-Albrecht T.; Russell T. P.; Steiner U. Electrohydrodynamic Instabilities in Polymer Films. Europhys. Lett. 2001, 53, 518–524. 10.1209/epl/i2001-00183-2. DOI

Lin Z.; Kerle T.; Russell T. P.; Schäffer E.; Steiner U. Electric Field Induced Dewetting at Polymer/Polymer Interfaces. Macromolecules 2002, 35, 6255–6262. 10.1021/ma020311p. DOI

Amarandei G.; Beltrame P.; Clancy I.; O’Dwyer C.; Arshak A.; Steiner U.; Corcoran D.; Thiele U. Pattern Formation Induced by an Electric Field in a Polymer–air–polymer Thin Film System. Soft Matter 2012, 8, 6333–6349. 10.1039/c2sm25273b. DOI

Goldberg-Oppenheimer P.; Steiner U. Rapid Electrohydrodynamic Lithography Using Low-Viscosity Polymers. Small 2010, 6, 1248–1254. 10.1002/smll.201000060. PubMed DOI

Scriven L. E.; Sternling C. V. The Marangoni Effects. Nature 1960, 187, 186–188. 10.1038/187186a0. DOI

Kim H.; Boulogne F.; Um E.; Jacobi I.; Button E.; Stone H. A. Controlled Uniform Coating from the Interplay of Marangoni Flows and Surface-Adsorbed Macromolecules. Phys. Rev. Lett. 2016, 116, 124501.10.1103/physrevlett.116.124501. PubMed DOI

Du F.; Felts J. R.; Xie X.; Song J.; Li Y.; Rosenberger M. R.; Islam A. E.; Jin S. H.; Dunham S. N.; Zhang C.; Wilson W. L.; Huang Y.; King W. P.; Rogers J. A. Laser-Induced Nanoscale Thermocapillary Flow for Purification of Aligned Arrays of Single-Walled Carbon Nanotubes. ACS Nano 2014, 8, 12641–12649. 10.1021/nn505566r. PubMed DOI

Chou S. Y.; Zhuang L.; Guo L. Lithographically Induced Self-Construction of Polymer Microstructures for Resistless Patterning. Appl. Phys. Lett. 1999, 75, 1004–1006. 10.1063/1.124579. DOI

Schäffer E.; Harkema S.; Roerdink M.; Blossey R.; Steiner U. Thermomechanical Lithography: Pattern Replication Using a Temperature Gradient Driven Instability. Adv. Mater. 2003, 15, 514–517. 10.1002/adma.200390119. DOI

Singh G.; Batra S.; Zhang R.; Yuan H.; Yager K. G.; Cakmak M.; Berry B.; Karim A. Large-Scale Roll-to-Roll Fabrication of Vertically Oriented Block Copolymer Thin Films. ACS Nano 2013, 7, 5291–5299. 10.1021/nn401094s. PubMed DOI

Okada K.; Tokudome Y.; Makiura R.; Konstas K.; Malfatti L.; Innocenzi P.; Ogawa H.; Kanaya T.; Falcaro P.; Takahashi M. Micropattern Formation by Molecular Migration via UV-Induced Dehydration of Block Copolymers. Adv. Funct. Mater. 2014, 24, 2801–2809. 10.1002/adfm.201302812. DOI

Zhang A.; Bai H.; Li L. Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films. Chem. Rev. 2015, 115, 9801–9868. 10.1021/acs.chemrev.5b00069. PubMed DOI

Singer J. P.; Lin P.-T.; Kooi S. E.; Kimerling L. C.; Michel J.; Thomas E. L. Direct-Write Thermocapillary Dewetting of Polymer Thin Films by a Laser-Induced Thermal Gradient. Adv. Mater. 2013, 25, 6100–6105. 10.1002/adma.201302777. PubMed DOI

Singer J. P. Thermocapillary Approaches to the Deliberate Patterning of Polymers. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1649–1668. 10.1002/polb.24298. DOI

Singer J. P.; Kooi S. E.; Thomas E. L. Focused Laser-Induced Marangoni Dewetting for Patterning Polymer Thin Films. J. Polym. Sci., Part B: Polym. Phys. 2015, 54, 225–236. 10.1002/polb.23906. DOI

Lee J.-H.; Singer J. P.; Thomas E. L. Micro-/Nanostructured Mechanical Metamaterials. Adv. Mater. 2012, 24, 4782–4810. 10.1002/adma.201201644. PubMed DOI

Singer J. P.; Gotrik K. W.; Lee J.-H.; Kooi S. E.; Ross C. A.; Thomas E. L. Alignment and Reordering of a Block Copolymer by Solvent-Enhanced Thermal Laser Direct Write. Polymer 2014, 55, 1875–1882. 10.1016/j.polymer.2014.02.028. DOI

Jacobs A. G.; Liedel C.; Peng H.; Wang L.; Smilgies D.-M.; Ober C. K.; Thompson M. O. Kinetics of Block Copolymer Phase Segregation during Sub-Millisecond Transient Thermal Annealing. Macromolecules 2016, 49, 6462–6470. 10.1021/acs.macromol.6b00698. DOI

Majewski P. W.; Yager K. G. Millisecond Ordering of Block Copolymer Films via Photothermal Gradients. ACS Nano 2015, 9, 3896–3906. 10.1021/nn5071827. PubMed DOI

Majewski P. W.; Rahman A.; Black C. T.; Yager K. G. Arbitrary Lattice Symmetries via Block Copolymer Nanomeshes. Nat. Commun. 2015, 6, 7448.10.1038/ncomms8448. PubMed DOI PMC

Lyutakov O.; Huttel I.; Siegel J.; Švorčík V. Regular Surface Grating on Doped Polymer Induced by Laser Scanning. Appl. Phys. Lett. 2009, 95, 173103.10.1063/1.3254210. DOI

Elashnikov R.; Fitl P.; Svorcik V.; Lyutakov O. Patterning of Ultrathin Polymethylmethacrylate Films by in-Situ Photodirecting of the Marangoni Flow. Appl. Surf. Sci. 2017, 394, 562–568. 10.1016/j.apsusc.2016.10.074. DOI

Elashnikov R.; Trelin A.; Otta J.; Fitl P.; Mares D.; Jerabek V.; Svorcik V.; Lyutakov O. Laser Patterning of Transparent Polymers Assisted by Plasmon Excitation. Soft Matter 2018, 14, 4860–4865. 10.1039/c8sm00418h. PubMed DOI

Maity S.; Bochinski J. R.; Clarke L. I. Metal Nanoparticles Acting as Light-Activated Heating Elements within Composite Materials. Adv. Funct. Mater. 2012, 22, 5259–5270. 10.1002/adfm.201201051. DOI

Maity S.; Wu W.-C.; Tracy J. B.; Clarke L. I.; Bochinski J. R. Nanoscale Steady-State Temperature Gradients within Polymer Nanocomposites Undergoing Continuous-Wave Photothermal Heating from Gold Nanorods. Nanoscale 2017, 9, 11605–11618. 10.1039/c7nr04613h. PubMed DOI

Švanda J.; Kalachyova Y.; Slepička P.; Švorčík V.; Lyutakov O. Smart Component for Switching of Plasmon Resonance by External Electric Field. ACS Appl. Mater. Interfaces 2015, 8, 225–231. 10.1021/acsami.5b08334. PubMed DOI

Gomez N.; Lee J. Y.; Nickels J. D.; Schmidt C. E. Micropatterned Polypyrrole: A Combination of Electrical and Topographical Characteristics for the Stimulation of Cells. Adv. Funct. Mater. 2007, 17, 1645–1653. 10.1002/adfm.200600669. PubMed DOI PMC

Yager K. G.; Barrett C. J. All-optical patterning of azo polymer films. Curr. Opin. Solid State Mater. Sci. 2001, 5, 487–494. 10.1016/s1359-0286(02)00020-7. DOI

Kim C. B.; Wistrom J. C.; Ha H.; Zhou S. X.; Katsumata R.; Jones A. R.; Janes D. W.; Miller K. M.; Ellison C. J. Marangoni instability driven surface relief grating in an azobenzene-containing polymer film. Macromolecules 2016, 49, 7069–7076. 10.1021/acs.macromol.6b01848. DOI

Kalachyova Y.; Lyutakov O.; Slepicka P.; Elashnikov R.; Svorcik V. Preparation of periodic surface structures on doped poly (methyl metacrylate) films by irradiation with KrF excimer laser. Nanoscale Res. Lett. 2014, 9, 591.10.1186/1556-276x-9-591. PubMed DOI PMC

Bian S.; Williams J. M.; Kim D. Y.; Li L.; Balasubramanian S.; Kumar J.; Tripathy S. Photoinduced surface deformations on azobenzene polymer films. J. Appl. Phys. 1999, 86, 4498–4508. 10.1063/1.371393. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...