Surface morphology and optical properties of porphyrin/Au and Au/porphyrin/Au systems
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
24373347
PubMed Central
PMC3884014
DOI
10.1186/1556-276x-8-547
PII: 1556-276X-8-547
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Porphyrin/Au and Au/porphyrin/Au systems were prepared by vacuum evaporation and vacuum sputtering onto glass substrate. The surface morphology of as-prepared systems and those subjected to annealing at 160°C was studied by optical microscopy, atomic force microscopy, and scanning electron microscopy techniques. Absorption and luminescence spectra of as-prepared and annealed samples were measured. Annealing leads to disintegration of the initially continuous gold layer and formation of gold nanoclusters. An amplification of Soret band magnitude was observed on the Au/meso-tetraphenyl porphyrin (TPP) system in comparison with mere TPP. Additional enhancement of luminescence was observed after the sample annealing. In the case of sandwich Au/porphyrin/Au structure, suppression of one of the two porphyrins' luminescence maxima and sufficient enhancement of the second one were observed.
Zobrazit více v PubMed
Maier SA. Plasmonics: Fundamentals and Applications. New York: Springer; 2007. p. 201.
Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;8:668–677. doi: 10.1021/jp026731y. DOI
Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem. 2003;8:528–539. doi: 10.1007/s00216-003-2101-0. PubMed DOI
Raether H. In: Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces. Agranovich VM, Mills DL, editor. Amsterdam: Elsevier; 1982. Surface plasmons and roughness; pp. 511–531.
Boardman AD, Egan P, Lederer F, Langbein U, Mihalache D. In: Nonlinear Surface Electromagnetic Phenomena. Ponath H-E, Stegeman GI, editor. Amsterdam: Elsevier; 1991. Third-order nonlinear electromagnetic TE and TM guided waves; pp. 73–287. [Maradudin AA, Agranovich V (Series Editors): Modern Problems in Condensed Matter Sciences]
Aktsipetrov OA, Dubinina EM, Elovikov SS, Mishina ED, Nikulin AA, Novikova NN, Strebkov MS. The electromagnetic (classical) mechanism of surface enhanced second harmonic generation and Raman scattering in island films. Solid State Commun. 1989;8:1021–1024. doi: 10.1016/0038-1098(89)90185-3. DOI
Osawa M. In: Near-Field Optics and Surface Plasmon Polaritons. Kawata S, editor. Berlin: Springer; 2001. Surface-enhanced infrared absorption; pp. 163–187.
Karabchevsky A, Khare C, Rauschenbach B, Abdulhalim I. Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films. J Nanophotonics. 2012;8:1–12.
Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc. 2005;8:485–496. doi: 10.1002/jrs.1362. DOI
Schatz GC, Young MA, Van Duyne RP. Electromagnetic mechanism of SERS. Top Appl Phys. 2006;8:19–45. doi: 10.1007/3-540-33567-6_2. DOI
Tam F, Goodrich GP, Johnson BR, Halas NJ. Plasmonic enhancement of molecular fluorescence. Nano Lett. 2007;8:496–501. doi: 10.1021/nl062901x. PubMed DOI
Otto AJ. The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J Raman Spectrosc. 2005;8:497–509. doi: 10.1002/jrs.1355. DOI
Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys. 1978;8:4159. doi: 10.1063/1.437095. DOI
Boyd GT, Yu ZH, Shen YR. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys Rev B. 1986;8:7923–7936. doi: 10.1103/PhysRevB.33.7923. PubMed DOI
Fu Y, Lakowicz JR. Single-molecule studies of enhanced fluorescence on silver island films. Plasmonics. 2007;8:1–4. doi: 10.1007/s11468-007-9023-1. PubMed DOI PMC
Zhang J, Fu Y, Chowdhury MH, Lakowicz JR. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Lett. 2007;8:2101–2107. doi: 10.1021/nl071084d. PubMed DOI PMC
Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;8:267–297. doi: 10.1146/annurev.physchem.58.032806.104607. PubMed DOI
Svorcik V, Slepicka P, Svorcikova J, Zehentner J, Hnatowicz V. Characterization of evaporated and sputtered thin Au layers on poly (ethylene terephtalate) J Appl Polym Sci. 2006;8:1698. doi: 10.1002/app.22666. DOI
Kolska Z, Siegel J, Svorcik V. Size-dependent density of gold nano-clusters and nano-layers deposited on solid surface. Coll Czech Chem Commun. 2010;8:517–525. doi: 10.1135/cccc2009537. DOI
Akiyama T, Imahori H, Sakata Y. Preparation of molecular assemblies of porphyrin-linked alkanethiol on gold surface and their redox properties. Chem Lett. 1994;8:1447–1450.
Link S, El-Sayed MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem. 2000;8:409–453. doi: 10.1080/01442350050034180. DOI
Ishida A, Majima T. Photocurrent generation of a porphyrin self-assembly monolayer on a gold film electrode by surface plasmon excitation using near-infrared light. Chem Phys Lett. 2000;8:242–246. doi: 10.1016/S0009-2614(00)00393-6. DOI
Fukuda N, Mitsuishi M, Aoki A, Miyashita T. Photocurrent enhancement for polymer Langmuir-Blodgett monolayers containing ruthenium complex by surface plasmon resonance. J Phys Chem B. 2002;8:7048–7052. doi: 10.1021/jp014552v. DOI
Svorcik V, Kvitek O, Lyutakov O, Siegel J, Kolska Z. Annealing of sputtered gold nano-structures. Appl Phys A. 2011;8:747–751. doi: 10.1007/s00339-010-5977-5. DOI
Porath D, Millo O, Gersten JI. Computer simulations and STM studies of annealing of gold films. J Vac Sci Technol B. 1996;8:30–37. doi: 10.1116/1.588467. DOI
Svorcik V, Siegel J, Sutta P, Mistrik J, Janicek P, Worsch P, Kolska Z. Annealing of gold nanostructures sputtered on glass substrate. Appl Phys A. 2011;8:605–610. doi: 10.1007/s00339-010-6167-1. DOI
Jiran E, Thompson CV. Capillary instabilities in thin, continuous films. Thin Solid Films. 1992;8:23–28. doi: 10.1016/0040-6090(92)90941-4. DOI
Levine JR, Cohen JB, Chung YW. Thin film island growth kinetics: a grazing incidence small angle X-ray scattering study of gold on glass. Surf Sci. 1991;8:215–224. doi: 10.1016/0039-6028(91)90075-4. DOI
Wanner M, Werner R, Gerthsen D. Dynamics of gold clusters on amorphous carbon films induced by annealing in a transmission electron microscope. Surf Sci. 2006;8:632–640. doi: 10.1016/j.susc.2005.10.056. DOI
Ragab EA, Gadallah A, Mohamed MB, Azzouz IM. Effect of silver NPs plasmon on optical properties of fluorescein dye. Opt Laser Technol. 2013;8:109–112.
Sokolov K, Chumanov G, Cotton TM. Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem. 1998;8:3898–3905. doi: 10.1021/ac9712310. PubMed DOI
Bulkowski JE, Bull RA, Sauerbrunn SR. Luminescence and photoelectrochemistry of surfactant metalloporphyrin assemblies on solid supports. ACS Symp Ser. 1981;8:93–279.
Cordas CM, Viana AS, Leupold S, Montforts F-P, Abrantes LM. Self-assembled monolayer of an iron(III) porphyrin disulphide derivative on gold. Electrochem Commun. 2003;8:36–41. doi: 10.1016/S1388-2481(02)00530-1. DOI
Soichiro Yoshimoto Bull. Molecular assemblies of functional molecules on gold electrode surfaces studied by electrochemical scanning tunneling microscopy: relationship between function and adlayer structures. Chem Soc Jpn. 2006;8:1167–1190. doi: 10.1246/bcsj.79.1167. DOI
Wan L-J, Shundo S, Inukai J, Itaya K. Ordered adlayers of organic molecules on sulfur-modified Au(111): in situ scanning tunneling microscopy study. Langmuir. 2000;8:2164–2168. doi: 10.1021/la991069r. DOI
Imahori H, Norieda H, Nishimura Y, Yamazaki I, Higuchi K, Kato N, Motohiro T, Yamada H, Tamaki K, Arimura M, Sakata Y. Chain length effect on the structure and photoelectrochemical properties of self-assembled monolayers of porphyrins on gold electrodes. J Phys Chem B. 2000;8:1253–1260. doi: 10.1021/jp992768f. DOI
Scudiero L, Barlow DE, Hipps KW. Physical properties and metal ion specific scanning tunneling microscopy images of metal(II) tetraphenylporphyrins deposited from vapor onto gold (111) J Phys Chem B. 2000;8:11899–11905. doi: 10.1021/jp002292w. DOI
Jain B, Uppal A, Gupta PK, Das K. Photophysical properties of chlorin-p6 bound to coated gold nanorods. J Mol Struct. 2013;8:23–28.
Tam NCM, McVeigh PZ, MacDonald TD, Farhadi A, Wilson BC, Zheng G. Porphyrin-lipid stabilized gold nanoparticles for surface enhanced Raman scattering based imaging. Bioconjugate Chem. 2012;8:1726–1730. doi: 10.1021/bc300214z. PubMed DOI
Ikeda K, Takahashi K, Masuda T, Kobori H, Kanehara M, Teranishi T, Uosaki K. Structural tuning of optical antenna properties for plasmonic enhancement of photocurrent generation on a molecular monolayer system. J Phys Chem C. 2012;8:20806–20811. doi: 10.1021/jp308290v. DOI
Zhang X, Fu L, Liu J, Kuang Y, Luo L, Evans DG, Sun X. Ag@zinc–tetraphenylporphyrin core–shell nanostructures with unusual thickness-tunable fluorescence. Chem Commun. 2013;8:3513–3515. doi: 10.1039/c3cc37993k. PubMed DOI
Djiango M, Ritter K, Müller R, Klar TA. Spectral tuning of the phosphorescence from metalloporphyrins attached to gold nanorods. Opt Express. 2012;8:19374–19381. doi: 10.1364/OE.20.019374. PubMed DOI
Imahori H, Fukuzumi S. Porphyrin monolayer-modified gold clusters as photoactive materials. Adv Mater. 2001;8:1197–1199. doi: 10.1002/1521-4095(200108)13:15<1197::AID-ADMA1197>3.0.CO;2-4. DOI
Svorcik V, Kvitek O, Riha J, Kolska Z, Siegel J. Nano-structuring of sputtered gold layers on glass by annealing. Vacuum. 2012;8:729–732. doi: 10.1016/j.vacuum.2011.07.040. DOI
Attridge JW, Daniels PB, Deacon JK, Robinson GA, Davidson GP. Sensitivity enhancement of optical immunosensors by the use of a surface-plasmon resonance fluoroimmunoassay. Biosens Bioelectron. 1991;8:201–214. doi: 10.1016/0956-5663(91)80005-I. PubMed DOI
Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008;8:1578–1586. doi: 10.1021/ar7002804. PubMed DOI
Kalyuzhny G, Vaskevich A, Ashkenasy G, Shanzer A, Rubinstein I. UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films. J Phys Chem B. 2000;8:8238–8244. doi: 10.1021/jp0010785. DOI
Morisue M, Yamatsu S, Haruta N, Kobuke Y. Surface-grafted multiporphyrin arrays as light-harvesting antennae to amplify photocurrent generation. Chem Eur J. 2005;8:5563–5574. doi: 10.1002/chem.200500040. PubMed DOI
Shen Y, Zhan F, Lu J, Zhang B, Huang D, Xu X, Zhang Y, Wang M. Preparation of hybrid films containing gold nanoparticles and cobalt porphyrin with flexible electrochemical properties. Thin Solid Films. 2013;8:327–331.
Abdelrazzaq FB, Kwong RC, Thompson ME. Efficient photoinduced charge separation in layered zirconium viologen phosphonate compounds. J Am Chem Soc. 2002;8:4796–4803. doi: 10.1021/ja011700m. PubMed DOI
Imahori H. Giant multiporphyrin arrays as artificial light-harvesting antennas. J Phys Chem B. 2004;8:6130–6143. doi: 10.1021/jp038036b. PubMed DOI
Imahori H, Arimura M, Hanada T, Nishimura Y, Yamazaki I, Sakata Y, Fukuzumi S. Photoactive three-dimensional monolayers: porphyrin-alkanethiolate-stabilized gold clusters. J Am Chem Soc. 2001;8:335–336. doi: 10.1021/ja002838s. PubMed DOI
Paolesse R, Monti D, Monica LL, Venanzi M, Froiio A, Nardis S, Natale CD, Martinelli E, Damico A. Preparation and self-assembly of chiral porphyrin diads on the gold electrodes of quartz crystal microbalances: a novel potential approach to the development of enantioselective chemical sensors. Chem Eur J. 2002;8:2476–2483. doi: 10.1002/1521-3765(20020603)8:11<2476::AID-CHEM2476>3.0.CO;2-E. PubMed DOI
Hu Y, Xue Z, He H, Ai R, Liu X, Lu X. Photoelectrochemical sensing for hydroquinone based on porphyrin-functionalized Au nanoparticles on graphene. Biosensor Bioelectron. 2013;8:45–49. PubMed
Methods of Gold and Silver Nanoparticles Preparation