Solid-Phase Synthesis as a Tool to Create Exactly Defined, Branched Polymer Vectors for Cell Membrane Targeting
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38370914
PubMed Central
PMC10867888
DOI
10.1021/acs.macromol.3c02600
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Modern drug formulations often require, besides the active drug molecule, auxiliaries to enhance their pharmacological properties. Tailor-made, biocompatible polymers covalently connected to the drug molecule can fulfill this function by increasing its solubility, reducing its toxicity, and guiding it to a specific target. If targeting membrane-bound proteins, localization of the drug close to the cell membrane and its target is beneficial to increase drug efficiency and residence time. In this study, we present the synthesis of highly defined, branched polymeric structures with membrane-binding properties. One to three hydrophilic poly(ethylene oxide) or poly(2-ethyloxazoline) side chains were connected via a peptoid backbone using a two-step iterative protocol for solid-phase peptoid synthesis. Additional groups, e.g., a hydrophobic anchor for membrane attachment, were introduced. Due to the nature of solid-phase synthesis, the number and order of the side chains and additional units can be precisely defined. The method proved to be versatile for the generation of multifunctional, branched polymeric structures of molecular weights up to approximately 7000 g mol-1. The behavior of all compounds towards biological membranes and cells was investigated using liposomes as cell membrane models, HEK293 and U251-MG cell lines, and red blood cells, thereby demonstrating their potential value as drug auxiliaries with cell membrane affinity.
1st Faculty of Medicine Charles University Kateřinská 1660 32 121 08 Praha 2 Czech Republic
Institute of Macromolecular Chemistry CAS Heyrovského nám 2 162 06 Praha 6 Czech Republic
Institute of Organic Chemistry and Biochemistry CAS Flemingovo nám 2 166 10 Praha 6 Czech Republic
Zobrazit více v PubMed
Allen T. M.; Cullis P. R. Drug Delivery Systems: Entering the Mainstream. Science 2004, 303 (5665), 1818–1822. 10.1126/science.1095833. PubMed DOI
Yang Y.; Wang S.; Ma P.; Jiang Y.; Cheng K.; Yu Y.; Jiang N.; Miao H.; Tang Q.; Liu F.; Zha Y.; Li N. Drug conjugate-based anticancer therapy - Current status and perspectives. Cancer Lett. 2023, 552, 215969.10.1016/j.canlet.2022.215969. PubMed DOI
Large D. E.; Soucy J. R.; Hebert J.; Auguste D. T. Advances in Receptor-Mediated, Tumor-Targeted Drug Delivery. Adv. Ther. 2019, 2 (1), 1800091.10.1002/adtp.201800091. PubMed DOI PMC
Nishiyama N.; Okazaki S.; Cabral H.; Miyamoto M.; Kato Y.; Sugiyama Y.; Nishio K.; Matsumura Y.; Kataoka K. Novel Cisplatin-Incorporated Polymeric Micelles Can Eradicate Solid Tumors in Mice. Cancer Res. 2003, 63 (24), 8977–8983. PubMed
Wais U.; Jackson A. W.; He T.; Zhang H. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles. Nanoscale 2016, 8 (4), 1746–1769. 10.1039/C5NR07161E. PubMed DOI
Zhao Z.; Ukidve A.; Kim J.; Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020, 181 (1), 151–167. 10.1016/j.cell.2020.02.001. PubMed DOI
Albuquerque L. J. C.; Sincari V.; Jäger A.; Kucka J.; Humajova J.; Pankrac J.; Paral P.; Heizer T.; Janouškova O.; Davidovich I.; Talmon Y.; Pouckova P.; Štěpánek P.; Sefc L.; Hruby M.; Giacomelli F. C.; Jäger E. pH-responsive polymersome-mediated delivery of doxorubicin into tumor sites enhances the therapeutic efficacy and reduces cardiotoxic effects. J. Controlled Release 2021, 332, 529–538. 10.1016/j.jconrel.2021.03.013. PubMed DOI
Ekladious I.; Colson Y. L.; Grinstaff M. W. Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discovery 2019, 18 (4), 273–294. 10.1038/s41573-018-0005-0. PubMed DOI
Cabral H.; Miyata K.; Osada K.; Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem. Rev. 2018, 118 (14), 6844–6892. 10.1021/acs.chemrev.8b00199. PubMed DOI
Raycraft B. M.; MacDonald J. P.; McIntosh J. T.; Shaver M. P.; Gillies E. R. Post-polymerization functionalization of poly(ethylene oxide)–poly(β-6-heptenolactone) diblock copolymers to tune properties and self-assembly. Polym. Chem. 2017, 8 (3), 557–567. 10.1039/C6PY01785A. DOI
Lin J.; Zhang H.; Chen Z.; Zheng Y. Penetration of Lipid Membranes by Gold Nanoparticles: Insights into Cellular Uptake, Cytotoxicity, and Their Relationship. ACS Nano 2010, 4 (9), 5421–5429. 10.1021/nn1010792. PubMed DOI
Soo Choi H.; Liu W.; Misra P.; Tanaka E.; Zimmer J. P.; Itty Ipe B.; Bawendi M. G.; Frangioni J. V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25 (10), 1165–1170. 10.1038/nbt1340. PubMed DOI PMC
To’a Salazar G.; Huang Z.; Zhang N.; Zhang X.-G.; An Z. Antibody Therapies Targeting Complex Membrane Proteins. Engineering 2021, 7 (11), 1541–1551. 10.1016/j.eng.2020.11.013. DOI
Cherry R. J.; Smith P. R.; Morrison I. E. G.; Fernandez N. Mobility of cell surface receptors: a re-evaluation. FEBS Lett. 1998, 430 (1–2), 88–91. 10.1016/S0014-5793(98)00595-X. PubMed DOI
Hartwell B. L.; Antunez L.; Sullivan B. P.; Thati S.; Sestak J. O.; Berkland C. Multivalent Nanomaterials: Learning from Vaccines and Progressing to Antigen-Specific Immunotherapies. J. Pharm. Sci. 2015, 104 (2), 346–361. 10.1002/jps.24273. PubMed DOI
Godoy A.; Ulloa V.; Rodríguez F.; Reinicke K.; Yañez A. J.; García M. d. l. A.; Medina R. A.; Carrasco M.; Barberis S.; Castro T.; Martínez F.; Koch X.; Vera J. C.; Poblete M. T.; Figueroa C. D.; Peruzzo B.; Pérez F.; Nualart F. Differential subcellular distribution of glucose transporters GLUT1–6 and GLUT9 in human cancer: Ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. J. Cell. Physiol. 2006, 207 (3), 614–627. 10.1002/jcp.20606. PubMed DOI
Das T.; Yount J. S.; Hang H. C. Protein S-palmitoylation in immunity. Open Biol. 2021, 11 (3), 200411.10.1098/rsob.200411. PubMed DOI PMC
Ercole F.; Whittaker M. R.; Quinn J. F.; Davis T. P. Cholesterol Modified Self-Assemblies and Their Application to Nanomedicine. Biomacromolecules 2015, 16 (7), 1886–1914. 10.1021/acs.biomac.5b00550. PubMed DOI
Kurtzhals P.; Østergaard S.; Nishimura E.; Kjeldsen T. Derivatization with fatty acids in peptide and protein drug discovery. Nat. Rev. Drug Discovery 2023, 22 (1), 59–80. 10.1038/s41573-022-00529-w. PubMed DOI
Zhang P.; Li M.; Xiao C.; Chen X. Stimuli-responsive polypeptides for controlled drug delivery. Chem. Commun. 2021, 57 (75), 9489–9503. 10.1039/D1CC04053G. PubMed DOI
Kim B. S.; Naito M.; Chaya H.; Hori M.; Hayashi K.; Min H. S.; Yi Y.; Kim H. J.; Nagata T.; Anraku Y.; Kishimura A.; Kataoka K.; Miyata K. Noncovalent Stabilization of Vesicular Polyion Complexes with Chemically Modified/Single-Stranded Oligonucleotides and PEG-b-guanidinylated Polypeptides for Intracavity Encapsulation of Effector Enzymes Aimed at Cooperative Gene Knockdown. Biomacromolecules 2020, 21 (10), 4365–4376. 10.1021/acs.biomac.0c01192. PubMed DOI
Fu Z.; Li S.; Han S.; Shi C.; Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduction Targeted Ther. 2022, 7 (1), 93.10.1038/s41392-022-00947-7. PubMed DOI PMC
Fatima S. W.; Khare S. K. Benefits and challenges of antibody drug conjugates as novel form of chemotherapy. J. Controlled Release 2022, 341, 555–565. 10.1016/j.jconrel.2021.12.013. PubMed DOI
Ulbricht J.; Jordan R.; Luxenhofer R. On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials 2014, 35 (17), 4848–4861. 10.1016/j.biomaterials.2014.02.029. PubMed DOI
Fam S. Y.; Chee C. F.; Yong C. Y.; Ho K. L.; Mariatulqabtiah A. R.; Tan W. S. Stealth Coating of Nanoparticles in Drug-Delivery Systems. Nanomaterials 2020, 10 (4), 787.10.3390/nano10040787. PubMed DOI PMC
Schöttler S.; Becker G.; Winzen S.; Steinbach T.; Mohr K.; Landfester K.; Mailänder V.; Wurm F. R. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 2016, 11 (4), 372–377. 10.1038/nnano.2015.330. PubMed DOI
Friedl J. D.; Nele V.; De Rosa G.; Bernkop-Schnürch A. Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Adv. Funct. Mater. 2021, 31 (34), 2103347.10.1002/adfm.202103347. DOI
Viegas T. X.; Bentley M. D.; Harris J. M.; Fang Z.; Yoon K.; Dizman B.; Weimer R.; Mero A.; Pasut G.; Veronese F. M. Polyoxazoline: Chemistry, Properties, and Applications in Drug Delivery. Bioconjugate Chem. 2011, 22 (5), 976–986. 10.1021/bc200049d. PubMed DOI
Zalipsky S.; Hansen C. B.; Oaks J. M.; Allen T. M. Evaluation of Blood Clearance Rates and Biodistribution of Poly(2-oxazoline)-Grafted Liposomes§. J. Pharm. Sci. 1996, 85 (2), 133–137. 10.1021/js9504043. PubMed DOI
Schroffenegger M.; Leitner N. S.; Morgese G.; Ramakrishna S. N.; Willinger M.; Benetti E. M.; Reimhult E. Polymer Topology Determines the Formation of Protein Corona on Core-Shell Nanoparticles. ACS Nano 2020, 14 (10), 12708–12718. 10.1021/acsnano.0c02358. PubMed DOI PMC
Muljajew I.; Huschke S.; Ramoji A.; Cseresnyés Z.; Hoeppener S.; Nischang I.; Foo W.; Popp J.; Figge M. T.; Weber C.; Bauer M.; Schubert U. S.; Press A. T. Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of Backbone End Group Determine Liver Cell-Type Specificity. ACS Nano 2021, 15 (7), 12298–12313. 10.1021/acsnano.1c04213. PubMed DOI
Kronek J.; Paulovičová E.; Paulovičová L.; Kroneková Z.; Lustoň J. Immunomodulatory efficiency of poly(2-oxazolines). J. Mater. Sci.: Mater. Med. 2012, 23 (6), 1457–1464. 10.1007/s10856-012-4621-7. PubMed DOI
Hoang Thi T. T.; Pilkington E. H.; Nguyen D. H.; Lee J. S.; Park K. D.; Truong N. P. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers 2020, 12 (2), 298.10.3390/polym12020298. PubMed DOI PMC
Bruusgaard-Mouritsen M. A.; Johansen J. D.; Garvey L. H. Clinical manifestations and impact on daily life of allergy to polyethylene glycol (PEG) in ten patients. Clin. Exp. Allergy 2021, 51 (3), 463–470. 10.1111/cea.13822. PubMed DOI
Herzberger J.; Niederer K.; Pohlit H.; Seiwert J.; Worm M.; Wurm F. R.; Frey H. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem. Rev. 2016, 116 (4), 2170–2243. 10.1021/acs.chemrev.5b00441. PubMed DOI
Jana S.; Hoogenboom R. Poly(2-oxazoline)s: a comprehensive overview of polymer structures and their physical properties—an update. Polym. Int. 2022, 71 (8), 935–949. 10.1002/pi.6426. DOI
Lorson T.; Lübtow M. M.; Wegener E.; Haider M. S.; Borova S.; Nahm D.; Jordan R.; Sokolski-Papkov M.; Kabanov A. V.; Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018, 178, 204–280. 10.1016/j.biomaterials.2018.05.022. PubMed DOI
Zahoranová A.; Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations—An Update. Adv. Healthcare Mater. 2021, 10 (6), 2001382.10.1002/adhm.202001382. PubMed DOI PMC
Le Devedec F.; Won A.; Oake J.; Houdaihed L.; Bohne C.; Yip C. M.; Allen C. Postalkylation of a Common mPEG-b-PAGE Precursor to Produce Tunable Morphologies of Spheres, Filomicelles, Disks, and Polymersomes. ACS Macro Lett. 2016, 5 (1), 128–133. 10.1021/acsmacrolett.5b00791. DOI
Elter J. K.; Biehl P.; Gottschaldt M.; Schacher F. H. Core-crosslinked worm-like micelles from polyether-based diblock terpolymers. Polym. Chem. 2019, 10 (40), 5425–5439. 10.1039/C9PY01054H. DOI
Glassner M.; Vergaelen M.; Hoogenboom R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polym. Int. 2018, 67 (1), 32–45. 10.1002/pi.5457. DOI
Merrifield R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85 (14), 2149–2154. 10.1021/ja00897a025. DOI
Tran H.; Gael S. L.; Connolly M. D.; Zuckermann R. N. Solid-phase Submonomer Synthesis of Peptoid Polymers and their Self-Assembly into Highly-Ordered Nanosheets. JoVE 2011, 57, e337310.3791/3373. PubMed DOI PMC
Hartmann L.; Krause E.; Antonietti M.; Börner H. G. Solid-Phase Supported Polymer Synthesis of Sequence-Defined, Multifunctional Poly(amidoamines). Biomacromolecules 2006, 7 (4), 1239–1244. 10.1021/bm050884k. PubMed DOI
Garegg P. J.; Lindh I.; Regberg T.; Stawinski J.; Strömberg R.; Henrichson C. Nucleoside H-phosphonates. III. Chemical synthesis of oligodeoxyribonucleotides by the hydrogenphosphonate approach. Tetrahedron Lett. 1986, 27 (34), 4051–4054. 10.1016/S0040-4039(00)84908-4. DOI
Soete M.; Mertens C.; Aksakal R.; Badi N.; Du Prez F. Sequence-Encoded Macromolecules with Increased Data Storage Capacity through a Thiol-Epoxy Reaction. ACS Macro Lett. 2021, 10 (5), 616–622. 10.1021/acsmacrolett.1c00275. PubMed DOI
Hirata T.; Kogiso H.; Morimoto K.; Miyamoto S.; Taue H.; Sano S.; Muguruma N.; Ito S.; Nagao Y. Synthesis and reactivities of 3-Indocyanine-green-acyl-1,3-thiazolidine-2-thione (ICG-ATT) as a new near-infrared fluorescent-labeling reagent. Bioorg. Med. Chem. 1998, 6 (11), 2179–2184. 10.1016/S0968-0896(98)00156-4. PubMed DOI
Xu H.; Diolintzi A.; Storch J. Fatty acid-binding proteins: functional understanding and diagnostic implications. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22 (6), 407–412. 10.1097/mco.0000000000000600. PubMed DOI PMC
Sedlacek O.; Monnery B. D.; Filippov S. K.; Hoogenboom R.; Hruby M. Poly(2-Oxazoline)s - Are They More Advantageous for Biomedical Applications Than Other Polymers?. Macromol. Rapid Commun. 2012, 33 (19), 1648–1662. 10.1002/marc.201200453. PubMed DOI
Slor G.; Olea A. R.; Pujals S.; Tigrine A.; De La Rosa V. R.; Hoogenboom R.; Albertazzi L.; Amir R. J. Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks. Biomacromolecules 2021, 22 (3), 1197–1210. 10.1021/acs.biomac.0c01708. PubMed DOI PMC
Andrade S.; Ramalho M. J.; Loureiro J. A.; Pereira M. C. Liposomes as biomembrane models: Biophysical techniques for drug-membrane interaction studies. J. Mol. Liq. 2021, 334, 116141.10.1016/j.molliq.2021.116141. DOI
Bonicelli M. G.; Giansanti L.; Ierino M.; Mancini G. Interaction of cationic liposomes with cell membrane models. J. Colloid Interface Sci. 2011, 355 (1), 1–8. 10.1016/j.jcis.2010.12.005. PubMed DOI
Sincari V.; Jäger E.; Loureiro K. C.; Vragovic M.; Hofmann E.; Schlenk M.; Filipová M.; Rydvalová E.; Štěpánek P.; Hrubý M.; Förster S.; Jäger A. pH-Dependent disruption of giant polymer vesicles: a step towards biomimetic membranes. Polym. Chem. 2023, 14 (4), 443–451. 10.1039/D2PY01229D. DOI
Manaargadoo-Catin M.; Ali-Cherif A.; Pougnas J.-L.; Perrin C. Hemolysis by surfactants — A review. Adv. Colloid Interface Sci. 2016, 228, 1–16. 10.1016/j.cis.2015.10.011. PubMed DOI
Lomakina G. Y.; Modestova Y. A.; Ugarova N. N. Bioluminescence assay for cell viability. Biochemistry (Moscow) 2015, 80 (6), 701–713. 10.1134/S0006297915060061. PubMed DOI
Volet G.; Lav T.-X.; Babinot J.; Amiel C. Click-Chemistry: An Alternative Way to Functionalize Poly(2-methyl-2-oxazoline). Macromol. Chem. Phys. 2011, 212 (2), 118–124. 10.1002/macp.201000556. DOI
Rudolph T.; Kumar Allampally N.; Fernández G.; Schacher F. H. Controlling Aqueous Self-Assembly Mechanisms by Hydrophobic Interactions. Chem.—Eur. J. 2014, 20 (43), 13871–13875. 10.1002/chem.201404141. PubMed DOI
Mandal P. K.; McMurray J. S. Pd-C-Induced Catalytic Transfer Hydrogenation with Triethylsilane. J. Org. Chem. 2007, 72 (17), 6599–6601. 10.1021/jo0706123. PubMed DOI
Svedhem S.; Hollander C.-Å.; Shi J.; Konradsson P.; Liedberg B.; Svensson S. C. T. Synthesis of a Series of Oligo(ethylene glycol)-Terminated Alkanethiol Amides Designed to Address Structure and Stability of Biosensing Interfaces. J. Org. Chem. 2001, 66 (13), 4494–4503. 10.1021/jo0012290. PubMed DOI
Elter J. K.; Quader S.; Eichhorn J.; Gottschaldt M.; Kataoka K.; Schacher F. H. Core-Cross-linked Fluorescent Worm-Like Micelles for Glucose-Mediated Drug Delivery. Biomacromolecules 2021, 22 (4), 1458–1471. 10.1021/acs.biomac.0c01661. PubMed DOI
Sedlacek O.; Monnery B. D.; Hoogenboom R. Synthesis of defined high molar mass poly(2-methyl-2-oxazoline). Polym. Chem. 2019, 10 (11), 1286–1290. 10.1039/C9PY00013E. PubMed DOI
Moreadith R. W.; Viegas T. X.; Bentley M. D.; Harris J. M.; Fang Z.; Yoon K.; Dizman B.; Weimer R.; Rae B. P.; Li X.; Rader C.; Standaert D.; Olanow W. Clinical development of a poly(2-oxazoline) (POZ) polymer therapeutic for the treatment of Parkinson’s disease - Proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur. Polym. J. 2017, 88, 524–552. 10.1016/j.eurpolymj.2016.09.052. DOI
Morgese G.; Verbraeken B.; Ramakrishna S. N.; Gombert Y.; Cavalli E.; Rosenboom J.-G.; Zenobi-Wong M.; Spencer N. D.; Hoogenboom R.; Benetti E. M. Chemical Design of Non-Ionic Polymer Brushes as Biointerfaces: Poly(2-oxazine)s Outperform Both Poly(2-oxazoline)s and PEG. Angew. Chem., Int. Ed. 2018, 57 (36), 11667–11672. 10.1002/anie.201805620. PubMed DOI
Litt M.; Levy A.; Herz J. Polymerization of Cyclic Imino Ethers. X. Kinetics, Chain Transfer, and Repolymerization. J. Macromol. Sci., Part A: Pure Appl.Chem. 1975, 9 (5), 703–727. 10.1080/00222337508065890. DOI
Magarkar A.; Róg T.; Bunker A. A computational study suggests that replacing PEG with PMOZ may increase exposure of hydrophobic targeting moiety. Eur. J. Pharm. Sci. 2017, 103, 128–135. 10.1016/j.ejps.2017.03.008. PubMed DOI
Hsieh A.-H.; Corti D. S.; Franses E. I. Rayleigh and Rayleigh-Debye-Gans light scattering intensities and spetroturbidimetry of dispersions of unilamellar vesicles and multilamellar liposomes. J. Colloid Interface Sci. 2020, 578, 471–483. 10.1016/j.jcis.2020.05.085. PubMed DOI
Kapusta P.; Macháň R.; Benda A.; Hof M. Fluorescence Lifetime Correlation Spectroscopy (FLCS): Concepts, Applications and Outlook. Int. J. Mol. Sci. 2012, 13 (12), 12890–12910. 10.3390/ijms131012890. PubMed DOI PMC
Wahl M.; Rahn H.-J.; Gregor I.; Erdmann R.; Enderlein J. Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels. Rev. Sci. Instrum. 2007, 78 (3), 033106.10.1063/1.2715948. PubMed DOI
Jain S.; Bates F. S. On the Origins of Morphological Complexity in Block Copolymer Surfactants. Science 2003, 300 (5618), 460–464. 10.1126/science.1082193. PubMed DOI
Gelbart W. M.; Ben-Shaul A.; Roux D.. Micelles, Membranes, Microemulsions, and Monolayers, 1; Springer New York, 1994.
Nagarajan R. Molecular Packing Parameter and Surfactant Self-Assembly: The Neglected Role of the Surfactant Tail. Langmuir 2002, 18 (1), 31–38. 10.1021/la010831y. DOI
Trappmann B.; Ludwig K.; Radowski M. R.; Shukla A.; Mohr A.; Rehage H.; Böttcher C.; Haag R. A New Family of Nonionic Dendritic Amphiphiles Displaying Unexpected Packing Parameters in Micellar Assemblies. J. Am. Chem. Soc. 2010, 132 (32), 11119–11124. 10.1021/ja101523v. PubMed DOI
v. Berlepsch H.; Böttcher C. H-Aggregates of an Indocyanine Cy5 Dye: Transition from Strong to Weak Molecular Coupling. J. Phys. Chem. B 2015, 119 (35), 11900–11909. 10.1021/acs.jpcb.5b05576. PubMed DOI
Kang J.; Kaczmarek O.; Liebscher J.; Dähne L. Prevention of H-Aggregates Formation in Cy5 Labeled Macromolecules. Int. J. Polym. Sci. 2010, 2010, 264781–264787. 10.1155/2010/264781. DOI
West W.; Pearce S. The Dimeric State of Cyanine Dyes. J. Phys. Chem. 1965, 69 (6), 1894–1903. 10.1021/j100890a019. DOI
He H.; Liu C.; Ming J.; Lv Y.; Qi J.; Lu Y.; Dong X.; Zhao W.; Wu W. Accurate and sensitive probing of onset of micellization based on absolute aggregation-caused quenching effect. Aggregate 2022, 3 (5), e16310.1002/agt2.163. DOI
Basu Ray G.; Chakraborty I.; Moulik S. P. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J. Colloid Interface Sci. 2006, 294 (1), 248–254. 10.1016/j.jcis.2005.07.006. PubMed DOI
Breton M.; Amirkavei M.; Mir L. M. Optimization of the Electroformation of Giant Unilamellar Vesicles (GUVs) with Unsaturated Phospholipids. J. Membr. Biol. 2015, 248 (5), 827–835. 10.1007/s00232-015-9828-3. PubMed DOI
Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem. J. 1993, 294 (1), 1–14. 10.1042/bj2940001. PubMed DOI PMC
Sujai P. T.; Joseph M. M.; Saranya G.; Nair J. B.; Murali V. P.; Maiti K. K. Surface charge modulates the internalization vs. penetration of gold nanoparticles: comprehensive scrutiny on monolayer cancer cells, multicellular spheroids and solid tumors by SERS modality. Nanoscale 2020, 12 (13), 6971–6975. 10.1039/D0NR00809E. PubMed DOI
Foroozandeh P.; Aziz A. A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018, 13 (1), 339.10.1186/s11671-018-2728-6. PubMed DOI PMC
Mahmoud A. M.; de Jongh P. A. J. M.; Briere S.; Chen M.; Nowell C. J.; Johnston A. P. R.; Davis T. P.; Haddleton D. M.; Kempe K. Carboxylated Cy5-Labeled Comb Polymers Passively Diffuse the Cell Membrane and Target Mitochondria. ACS Appl. Mater. Interfaces 2019, 11 (34), 31302–31310. 10.1021/acsami.9b09395. PubMed DOI
Jiang Z.; Liu H.; He H.; Yadava N.; Chambers J. J.; Thayumanavan S. Anionic Polymers Promote Mitochondrial Targeting of Delocalized Lipophilic Cations. Bioconjugate Chem. 2020, 31 (5), 1344–1353. 10.1021/acs.bioconjchem.0c00079. PubMed DOI PMC
Behzadi S.; Serpooshan V.; Tao W.; Hamaly M. A.; Alkawareek M. Y.; Dreaden E. C.; Brown D.; Alkilany A. M.; Farokhzad O. C.; Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 2017, 46 (14), 4218–4244. 10.1039/C6CS00636A. PubMed DOI PMC
Los D. A.; Murata N. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta, Biomembr. 2004, 1666 (1–2), 142–157. 10.1016/j.bbamem.2004.08.002. PubMed DOI