Solid-Phase Synthesis as a Tool to Create Exactly Defined, Branched Polymer Vectors for Cell Membrane Targeting

. 2024 Feb 13 ; 57 (3) : 1050-1071. [epub] 20240126

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38370914

Modern drug formulations often require, besides the active drug molecule, auxiliaries to enhance their pharmacological properties. Tailor-made, biocompatible polymers covalently connected to the drug molecule can fulfill this function by increasing its solubility, reducing its toxicity, and guiding it to a specific target. If targeting membrane-bound proteins, localization of the drug close to the cell membrane and its target is beneficial to increase drug efficiency and residence time. In this study, we present the synthesis of highly defined, branched polymeric structures with membrane-binding properties. One to three hydrophilic poly(ethylene oxide) or poly(2-ethyloxazoline) side chains were connected via a peptoid backbone using a two-step iterative protocol for solid-phase peptoid synthesis. Additional groups, e.g., a hydrophobic anchor for membrane attachment, were introduced. Due to the nature of solid-phase synthesis, the number and order of the side chains and additional units can be precisely defined. The method proved to be versatile for the generation of multifunctional, branched polymeric structures of molecular weights up to approximately 7000 g mol-1. The behavior of all compounds towards biological membranes and cells was investigated using liposomes as cell membrane models, HEK293 and U251-MG cell lines, and red blood cells, thereby demonstrating their potential value as drug auxiliaries with cell membrane affinity.

Zobrazit více v PubMed

Allen T. M.; Cullis P. R. Drug Delivery Systems: Entering the Mainstream. Science 2004, 303 (5665), 1818–1822. 10.1126/science.1095833. PubMed DOI

Yang Y.; Wang S.; Ma P.; Jiang Y.; Cheng K.; Yu Y.; Jiang N.; Miao H.; Tang Q.; Liu F.; Zha Y.; Li N. Drug conjugate-based anticancer therapy - Current status and perspectives. Cancer Lett. 2023, 552, 215969.10.1016/j.canlet.2022.215969. PubMed DOI

Large D. E.; Soucy J. R.; Hebert J.; Auguste D. T. Advances in Receptor-Mediated, Tumor-Targeted Drug Delivery. Adv. Ther. 2019, 2 (1), 1800091.10.1002/adtp.201800091. PubMed DOI PMC

Nishiyama N.; Okazaki S.; Cabral H.; Miyamoto M.; Kato Y.; Sugiyama Y.; Nishio K.; Matsumura Y.; Kataoka K. Novel Cisplatin-Incorporated Polymeric Micelles Can Eradicate Solid Tumors in Mice. Cancer Res. 2003, 63 (24), 8977–8983. PubMed

Wais U.; Jackson A. W.; He T.; Zhang H. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles. Nanoscale 2016, 8 (4), 1746–1769. 10.1039/C5NR07161E. PubMed DOI

Zhao Z.; Ukidve A.; Kim J.; Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020, 181 (1), 151–167. 10.1016/j.cell.2020.02.001. PubMed DOI

Albuquerque L. J. C.; Sincari V.; Jäger A.; Kucka J.; Humajova J.; Pankrac J.; Paral P.; Heizer T.; Janouškova O.; Davidovich I.; Talmon Y.; Pouckova P.; Štěpánek P.; Sefc L.; Hruby M.; Giacomelli F. C.; Jäger E. pH-responsive polymersome-mediated delivery of doxorubicin into tumor sites enhances the therapeutic efficacy and reduces cardiotoxic effects. J. Controlled Release 2021, 332, 529–538. 10.1016/j.jconrel.2021.03.013. PubMed DOI

Ekladious I.; Colson Y. L.; Grinstaff M. W. Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discovery 2019, 18 (4), 273–294. 10.1038/s41573-018-0005-0. PubMed DOI

Cabral H.; Miyata K.; Osada K.; Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem. Rev. 2018, 118 (14), 6844–6892. 10.1021/acs.chemrev.8b00199. PubMed DOI

Raycraft B. M.; MacDonald J. P.; McIntosh J. T.; Shaver M. P.; Gillies E. R. Post-polymerization functionalization of poly(ethylene oxide)–poly(β-6-heptenolactone) diblock copolymers to tune properties and self-assembly. Polym. Chem. 2017, 8 (3), 557–567. 10.1039/C6PY01785A. DOI

Lin J.; Zhang H.; Chen Z.; Zheng Y. Penetration of Lipid Membranes by Gold Nanoparticles: Insights into Cellular Uptake, Cytotoxicity, and Their Relationship. ACS Nano 2010, 4 (9), 5421–5429. 10.1021/nn1010792. PubMed DOI

Soo Choi H.; Liu W.; Misra P.; Tanaka E.; Zimmer J. P.; Itty Ipe B.; Bawendi M. G.; Frangioni J. V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25 (10), 1165–1170. 10.1038/nbt1340. PubMed DOI PMC

To’a Salazar G.; Huang Z.; Zhang N.; Zhang X.-G.; An Z. Antibody Therapies Targeting Complex Membrane Proteins. Engineering 2021, 7 (11), 1541–1551. 10.1016/j.eng.2020.11.013. DOI

Cherry R. J.; Smith P. R.; Morrison I. E. G.; Fernandez N. Mobility of cell surface receptors: a re-evaluation. FEBS Lett. 1998, 430 (1–2), 88–91. 10.1016/S0014-5793(98)00595-X. PubMed DOI

Hartwell B. L.; Antunez L.; Sullivan B. P.; Thati S.; Sestak J. O.; Berkland C. Multivalent Nanomaterials: Learning from Vaccines and Progressing to Antigen-Specific Immunotherapies. J. Pharm. Sci. 2015, 104 (2), 346–361. 10.1002/jps.24273. PubMed DOI

Godoy A.; Ulloa V.; Rodríguez F.; Reinicke K.; Yañez A. J.; García M. d. l. A.; Medina R. A.; Carrasco M.; Barberis S.; Castro T.; Martínez F.; Koch X.; Vera J. C.; Poblete M. T.; Figueroa C. D.; Peruzzo B.; Pérez F.; Nualart F. Differential subcellular distribution of glucose transporters GLUT1–6 and GLUT9 in human cancer: Ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. J. Cell. Physiol. 2006, 207 (3), 614–627. 10.1002/jcp.20606. PubMed DOI

Das T.; Yount J. S.; Hang H. C. Protein S-palmitoylation in immunity. Open Biol. 2021, 11 (3), 200411.10.1098/rsob.200411. PubMed DOI PMC

Ercole F.; Whittaker M. R.; Quinn J. F.; Davis T. P. Cholesterol Modified Self-Assemblies and Their Application to Nanomedicine. Biomacromolecules 2015, 16 (7), 1886–1914. 10.1021/acs.biomac.5b00550. PubMed DOI

Kurtzhals P.; Østergaard S.; Nishimura E.; Kjeldsen T. Derivatization with fatty acids in peptide and protein drug discovery. Nat. Rev. Drug Discovery 2023, 22 (1), 59–80. 10.1038/s41573-022-00529-w. PubMed DOI

Zhang P.; Li M.; Xiao C.; Chen X. Stimuli-responsive polypeptides for controlled drug delivery. Chem. Commun. 2021, 57 (75), 9489–9503. 10.1039/D1CC04053G. PubMed DOI

Kim B. S.; Naito M.; Chaya H.; Hori M.; Hayashi K.; Min H. S.; Yi Y.; Kim H. J.; Nagata T.; Anraku Y.; Kishimura A.; Kataoka K.; Miyata K. Noncovalent Stabilization of Vesicular Polyion Complexes with Chemically Modified/Single-Stranded Oligonucleotides and PEG-b-guanidinylated Polypeptides for Intracavity Encapsulation of Effector Enzymes Aimed at Cooperative Gene Knockdown. Biomacromolecules 2020, 21 (10), 4365–4376. 10.1021/acs.biomac.0c01192. PubMed DOI

Fu Z.; Li S.; Han S.; Shi C.; Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduction Targeted Ther. 2022, 7 (1), 93.10.1038/s41392-022-00947-7. PubMed DOI PMC

Fatima S. W.; Khare S. K. Benefits and challenges of antibody drug conjugates as novel form of chemotherapy. J. Controlled Release 2022, 341, 555–565. 10.1016/j.jconrel.2021.12.013. PubMed DOI

Ulbricht J.; Jordan R.; Luxenhofer R. On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials 2014, 35 (17), 4848–4861. 10.1016/j.biomaterials.2014.02.029. PubMed DOI

Fam S. Y.; Chee C. F.; Yong C. Y.; Ho K. L.; Mariatulqabtiah A. R.; Tan W. S. Stealth Coating of Nanoparticles in Drug-Delivery Systems. Nanomaterials 2020, 10 (4), 787.10.3390/nano10040787. PubMed DOI PMC

Schöttler S.; Becker G.; Winzen S.; Steinbach T.; Mohr K.; Landfester K.; Mailänder V.; Wurm F. R. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 2016, 11 (4), 372–377. 10.1038/nnano.2015.330. PubMed DOI

Friedl J. D.; Nele V.; De Rosa G.; Bernkop-Schnürch A. Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Adv. Funct. Mater. 2021, 31 (34), 2103347.10.1002/adfm.202103347. DOI

Viegas T. X.; Bentley M. D.; Harris J. M.; Fang Z.; Yoon K.; Dizman B.; Weimer R.; Mero A.; Pasut G.; Veronese F. M. Polyoxazoline: Chemistry, Properties, and Applications in Drug Delivery. Bioconjugate Chem. 2011, 22 (5), 976–986. 10.1021/bc200049d. PubMed DOI

Zalipsky S.; Hansen C. B.; Oaks J. M.; Allen T. M. Evaluation of Blood Clearance Rates and Biodistribution of Poly(2-oxazoline)-Grafted Liposomes§. J. Pharm. Sci. 1996, 85 (2), 133–137. 10.1021/js9504043. PubMed DOI

Schroffenegger M.; Leitner N. S.; Morgese G.; Ramakrishna S. N.; Willinger M.; Benetti E. M.; Reimhult E. Polymer Topology Determines the Formation of Protein Corona on Core-Shell Nanoparticles. ACS Nano 2020, 14 (10), 12708–12718. 10.1021/acsnano.0c02358. PubMed DOI PMC

Muljajew I.; Huschke S.; Ramoji A.; Cseresnyés Z.; Hoeppener S.; Nischang I.; Foo W.; Popp J.; Figge M. T.; Weber C.; Bauer M.; Schubert U. S.; Press A. T. Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of Backbone End Group Determine Liver Cell-Type Specificity. ACS Nano 2021, 15 (7), 12298–12313. 10.1021/acsnano.1c04213. PubMed DOI

Kronek J.; Paulovičová E.; Paulovičová L.; Kroneková Z.; Lustoň J. Immunomodulatory efficiency of poly(2-oxazolines). J. Mater. Sci.: Mater. Med. 2012, 23 (6), 1457–1464. 10.1007/s10856-012-4621-7. PubMed DOI

Hoang Thi T. T.; Pilkington E. H.; Nguyen D. H.; Lee J. S.; Park K. D.; Truong N. P. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers 2020, 12 (2), 298.10.3390/polym12020298. PubMed DOI PMC

Bruusgaard-Mouritsen M. A.; Johansen J. D.; Garvey L. H. Clinical manifestations and impact on daily life of allergy to polyethylene glycol (PEG) in ten patients. Clin. Exp. Allergy 2021, 51 (3), 463–470. 10.1111/cea.13822. PubMed DOI

Herzberger J.; Niederer K.; Pohlit H.; Seiwert J.; Worm M.; Wurm F. R.; Frey H. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem. Rev. 2016, 116 (4), 2170–2243. 10.1021/acs.chemrev.5b00441. PubMed DOI

Jana S.; Hoogenboom R. Poly(2-oxazoline)s: a comprehensive overview of polymer structures and their physical properties—an update. Polym. Int. 2022, 71 (8), 935–949. 10.1002/pi.6426. DOI

Lorson T.; Lübtow M. M.; Wegener E.; Haider M. S.; Borova S.; Nahm D.; Jordan R.; Sokolski-Papkov M.; Kabanov A. V.; Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018, 178, 204–280. 10.1016/j.biomaterials.2018.05.022. PubMed DOI

Zahoranová A.; Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations—An Update. Adv. Healthcare Mater. 2021, 10 (6), 2001382.10.1002/adhm.202001382. PubMed DOI PMC

Le Devedec F.; Won A.; Oake J.; Houdaihed L.; Bohne C.; Yip C. M.; Allen C. Postalkylation of a Common mPEG-b-PAGE Precursor to Produce Tunable Morphologies of Spheres, Filomicelles, Disks, and Polymersomes. ACS Macro Lett. 2016, 5 (1), 128–133. 10.1021/acsmacrolett.5b00791. DOI

Elter J. K.; Biehl P.; Gottschaldt M.; Schacher F. H. Core-crosslinked worm-like micelles from polyether-based diblock terpolymers. Polym. Chem. 2019, 10 (40), 5425–5439. 10.1039/C9PY01054H. DOI

Glassner M.; Vergaelen M.; Hoogenboom R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polym. Int. 2018, 67 (1), 32–45. 10.1002/pi.5457. DOI

Merrifield R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85 (14), 2149–2154. 10.1021/ja00897a025. DOI

Tran H.; Gael S. L.; Connolly M. D.; Zuckermann R. N. Solid-phase Submonomer Synthesis of Peptoid Polymers and their Self-Assembly into Highly-Ordered Nanosheets. JoVE 2011, 57, e337310.3791/3373. PubMed DOI PMC

Hartmann L.; Krause E.; Antonietti M.; Börner H. G. Solid-Phase Supported Polymer Synthesis of Sequence-Defined, Multifunctional Poly(amidoamines). Biomacromolecules 2006, 7 (4), 1239–1244. 10.1021/bm050884k. PubMed DOI

Garegg P. J.; Lindh I.; Regberg T.; Stawinski J.; Strömberg R.; Henrichson C. Nucleoside H-phosphonates. III. Chemical synthesis of oligodeoxyribonucleotides by the hydrogenphosphonate approach. Tetrahedron Lett. 1986, 27 (34), 4051–4054. 10.1016/S0040-4039(00)84908-4. DOI

Soete M.; Mertens C.; Aksakal R.; Badi N.; Du Prez F. Sequence-Encoded Macromolecules with Increased Data Storage Capacity through a Thiol-Epoxy Reaction. ACS Macro Lett. 2021, 10 (5), 616–622. 10.1021/acsmacrolett.1c00275. PubMed DOI

Hirata T.; Kogiso H.; Morimoto K.; Miyamoto S.; Taue H.; Sano S.; Muguruma N.; Ito S.; Nagao Y. Synthesis and reactivities of 3-Indocyanine-green-acyl-1,3-thiazolidine-2-thione (ICG-ATT) as a new near-infrared fluorescent-labeling reagent. Bioorg. Med. Chem. 1998, 6 (11), 2179–2184. 10.1016/S0968-0896(98)00156-4. PubMed DOI

Xu H.; Diolintzi A.; Storch J. Fatty acid-binding proteins: functional understanding and diagnostic implications. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22 (6), 407–412. 10.1097/mco.0000000000000600. PubMed DOI PMC

Sedlacek O.; Monnery B. D.; Filippov S. K.; Hoogenboom R.; Hruby M. Poly(2-Oxazoline)s - Are They More Advantageous for Biomedical Applications Than Other Polymers?. Macromol. Rapid Commun. 2012, 33 (19), 1648–1662. 10.1002/marc.201200453. PubMed DOI

Slor G.; Olea A. R.; Pujals S.; Tigrine A.; De La Rosa V. R.; Hoogenboom R.; Albertazzi L.; Amir R. J. Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks. Biomacromolecules 2021, 22 (3), 1197–1210. 10.1021/acs.biomac.0c01708. PubMed DOI PMC

Andrade S.; Ramalho M. J.; Loureiro J. A.; Pereira M. C. Liposomes as biomembrane models: Biophysical techniques for drug-membrane interaction studies. J. Mol. Liq. 2021, 334, 116141.10.1016/j.molliq.2021.116141. DOI

Bonicelli M. G.; Giansanti L.; Ierino M.; Mancini G. Interaction of cationic liposomes with cell membrane models. J. Colloid Interface Sci. 2011, 355 (1), 1–8. 10.1016/j.jcis.2010.12.005. PubMed DOI

Sincari V.; Jäger E.; Loureiro K. C.; Vragovic M.; Hofmann E.; Schlenk M.; Filipová M.; Rydvalová E.; Štěpánek P.; Hrubý M.; Förster S.; Jäger A. pH-Dependent disruption of giant polymer vesicles: a step towards biomimetic membranes. Polym. Chem. 2023, 14 (4), 443–451. 10.1039/D2PY01229D. DOI

Manaargadoo-Catin M.; Ali-Cherif A.; Pougnas J.-L.; Perrin C. Hemolysis by surfactants — A review. Adv. Colloid Interface Sci. 2016, 228, 1–16. 10.1016/j.cis.2015.10.011. PubMed DOI

Lomakina G. Y.; Modestova Y. A.; Ugarova N. N. Bioluminescence assay for cell viability. Biochemistry (Moscow) 2015, 80 (6), 701–713. 10.1134/S0006297915060061. PubMed DOI

Volet G.; Lav T.-X.; Babinot J.; Amiel C. Click-Chemistry: An Alternative Way to Functionalize Poly(2-methyl-2-oxazoline). Macromol. Chem. Phys. 2011, 212 (2), 118–124. 10.1002/macp.201000556. DOI

Rudolph T.; Kumar Allampally N.; Fernández G.; Schacher F. H. Controlling Aqueous Self-Assembly Mechanisms by Hydrophobic Interactions. Chem.—Eur. J. 2014, 20 (43), 13871–13875. 10.1002/chem.201404141. PubMed DOI

Mandal P. K.; McMurray J. S. Pd-C-Induced Catalytic Transfer Hydrogenation with Triethylsilane. J. Org. Chem. 2007, 72 (17), 6599–6601. 10.1021/jo0706123. PubMed DOI

Svedhem S.; Hollander C.-Å.; Shi J.; Konradsson P.; Liedberg B.; Svensson S. C. T. Synthesis of a Series of Oligo(ethylene glycol)-Terminated Alkanethiol Amides Designed to Address Structure and Stability of Biosensing Interfaces. J. Org. Chem. 2001, 66 (13), 4494–4503. 10.1021/jo0012290. PubMed DOI

Elter J. K.; Quader S.; Eichhorn J.; Gottschaldt M.; Kataoka K.; Schacher F. H. Core-Cross-linked Fluorescent Worm-Like Micelles for Glucose-Mediated Drug Delivery. Biomacromolecules 2021, 22 (4), 1458–1471. 10.1021/acs.biomac.0c01661. PubMed DOI

Sedlacek O.; Monnery B. D.; Hoogenboom R. Synthesis of defined high molar mass poly(2-methyl-2-oxazoline). Polym. Chem. 2019, 10 (11), 1286–1290. 10.1039/C9PY00013E. PubMed DOI

Moreadith R. W.; Viegas T. X.; Bentley M. D.; Harris J. M.; Fang Z.; Yoon K.; Dizman B.; Weimer R.; Rae B. P.; Li X.; Rader C.; Standaert D.; Olanow W. Clinical development of a poly(2-oxazoline) (POZ) polymer therapeutic for the treatment of Parkinson’s disease - Proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur. Polym. J. 2017, 88, 524–552. 10.1016/j.eurpolymj.2016.09.052. DOI

Morgese G.; Verbraeken B.; Ramakrishna S. N.; Gombert Y.; Cavalli E.; Rosenboom J.-G.; Zenobi-Wong M.; Spencer N. D.; Hoogenboom R.; Benetti E. M. Chemical Design of Non-Ionic Polymer Brushes as Biointerfaces: Poly(2-oxazine)s Outperform Both Poly(2-oxazoline)s and PEG. Angew. Chem., Int. Ed. 2018, 57 (36), 11667–11672. 10.1002/anie.201805620. PubMed DOI

Litt M.; Levy A.; Herz J. Polymerization of Cyclic Imino Ethers. X. Kinetics, Chain Transfer, and Repolymerization. J. Macromol. Sci., Part A: Pure Appl.Chem. 1975, 9 (5), 703–727. 10.1080/00222337508065890. DOI

Magarkar A.; Róg T.; Bunker A. A computational study suggests that replacing PEG with PMOZ may increase exposure of hydrophobic targeting moiety. Eur. J. Pharm. Sci. 2017, 103, 128–135. 10.1016/j.ejps.2017.03.008. PubMed DOI

Hsieh A.-H.; Corti D. S.; Franses E. I. Rayleigh and Rayleigh-Debye-Gans light scattering intensities and spetroturbidimetry of dispersions of unilamellar vesicles and multilamellar liposomes. J. Colloid Interface Sci. 2020, 578, 471–483. 10.1016/j.jcis.2020.05.085. PubMed DOI

Kapusta P.; Macháň R.; Benda A.; Hof M. Fluorescence Lifetime Correlation Spectroscopy (FLCS): Concepts, Applications and Outlook. Int. J. Mol. Sci. 2012, 13 (12), 12890–12910. 10.3390/ijms131012890. PubMed DOI PMC

Wahl M.; Rahn H.-J.; Gregor I.; Erdmann R.; Enderlein J. Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels. Rev. Sci. Instrum. 2007, 78 (3), 033106.10.1063/1.2715948. PubMed DOI

Jain S.; Bates F. S. On the Origins of Morphological Complexity in Block Copolymer Surfactants. Science 2003, 300 (5618), 460–464. 10.1126/science.1082193. PubMed DOI

Gelbart W. M.; Ben-Shaul A.; Roux D.. Micelles, Membranes, Microemulsions, and Monolayers, 1; Springer New York, 1994.

Nagarajan R. Molecular Packing Parameter and Surfactant Self-Assembly: The Neglected Role of the Surfactant Tail. Langmuir 2002, 18 (1), 31–38. 10.1021/la010831y. DOI

Trappmann B.; Ludwig K.; Radowski M. R.; Shukla A.; Mohr A.; Rehage H.; Böttcher C.; Haag R. A New Family of Nonionic Dendritic Amphiphiles Displaying Unexpected Packing Parameters in Micellar Assemblies. J. Am. Chem. Soc. 2010, 132 (32), 11119–11124. 10.1021/ja101523v. PubMed DOI

v. Berlepsch H.; Böttcher C. H-Aggregates of an Indocyanine Cy5 Dye: Transition from Strong to Weak Molecular Coupling. J. Phys. Chem. B 2015, 119 (35), 11900–11909. 10.1021/acs.jpcb.5b05576. PubMed DOI

Kang J.; Kaczmarek O.; Liebscher J.; Dähne L. Prevention of H-Aggregates Formation in Cy5 Labeled Macromolecules. Int. J. Polym. Sci. 2010, 2010, 264781–264787. 10.1155/2010/264781. DOI

West W.; Pearce S. The Dimeric State of Cyanine Dyes. J. Phys. Chem. 1965, 69 (6), 1894–1903. 10.1021/j100890a019. DOI

He H.; Liu C.; Ming J.; Lv Y.; Qi J.; Lu Y.; Dong X.; Zhao W.; Wu W. Accurate and sensitive probing of onset of micellization based on absolute aggregation-caused quenching effect. Aggregate 2022, 3 (5), e16310.1002/agt2.163. DOI

Basu Ray G.; Chakraborty I.; Moulik S. P. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J. Colloid Interface Sci. 2006, 294 (1), 248–254. 10.1016/j.jcis.2005.07.006. PubMed DOI

Breton M.; Amirkavei M.; Mir L. M. Optimization of the Electroformation of Giant Unilamellar Vesicles (GUVs) with Unsaturated Phospholipids. J. Membr. Biol. 2015, 248 (5), 827–835. 10.1007/s00232-015-9828-3. PubMed DOI

Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem. J. 1993, 294 (1), 1–14. 10.1042/bj2940001. PubMed DOI PMC

Sujai P. T.; Joseph M. M.; Saranya G.; Nair J. B.; Murali V. P.; Maiti K. K. Surface charge modulates the internalization vs. penetration of gold nanoparticles: comprehensive scrutiny on monolayer cancer cells, multicellular spheroids and solid tumors by SERS modality. Nanoscale 2020, 12 (13), 6971–6975. 10.1039/D0NR00809E. PubMed DOI

Foroozandeh P.; Aziz A. A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018, 13 (1), 339.10.1186/s11671-018-2728-6. PubMed DOI PMC

Mahmoud A. M.; de Jongh P. A. J. M.; Briere S.; Chen M.; Nowell C. J.; Johnston A. P. R.; Davis T. P.; Haddleton D. M.; Kempe K. Carboxylated Cy5-Labeled Comb Polymers Passively Diffuse the Cell Membrane and Target Mitochondria. ACS Appl. Mater. Interfaces 2019, 11 (34), 31302–31310. 10.1021/acsami.9b09395. PubMed DOI

Jiang Z.; Liu H.; He H.; Yadava N.; Chambers J. J.; Thayumanavan S. Anionic Polymers Promote Mitochondrial Targeting of Delocalized Lipophilic Cations. Bioconjugate Chem. 2020, 31 (5), 1344–1353. 10.1021/acs.bioconjchem.0c00079. PubMed DOI PMC

Behzadi S.; Serpooshan V.; Tao W.; Hamaly M. A.; Alkawareek M. Y.; Dreaden E. C.; Brown D.; Alkilany A. M.; Farokhzad O. C.; Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 2017, 46 (14), 4218–4244. 10.1039/C6CS00636A. PubMed DOI PMC

Los D. A.; Murata N. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta, Biomembr. 2004, 1666 (1–2), 142–157. 10.1016/j.bbamem.2004.08.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...