Adamantane-Substituted Purine Nucleosides: Synthesis, Host-Guest Complexes with β-Cyclodextrin and Biological Activity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-06553S
Czech Science Foundation
CZ.02.1.01./0.0/0.0/18_046/0015974
European Regional Development Fund-Project "UP CIISB"
IGA/FT2018/001
Internal Founding Agency of Tomas Bata University in Zlín
IGA/FT/2019/007
Internal Founding Agency of Tomas Bata University in Zlín
PubMed
36499470
PubMed Central
PMC9739181
DOI
10.3390/ijms232315143
PII: ijms232315143
Knihovny.cz E-zdroje
- Klíčová slova
- adamantane, antiproliferative activity, glycosylation, nucleoside, purine, β-cyclodextrin,
- MeSH
- adamantan * farmakologie MeSH
- beta-cyklodextriny * farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nukleosidy farmakologie chemie MeSH
- purinové nukleosidy farmakologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adamantan * MeSH
- beta-cyklodextriny * MeSH
- nukleosidy MeSH
- purinové nukleosidy MeSH
Purine nucleosides represent an interesting group of nitrogen heterocycles, showing a wide range of biological effects. In this study, we designed and synthesized a series of 6,9-disubstituted and 2,6,9-trisubstituted purine ribonucleosides via consecutive nucleophilic aromatic substitution, glycosylation, and deprotection of the ribofuranose unit. We prepared eight new purine nucleosides bearing unique adamantylated aromatic amines at position 6. Additionally, the ability of the synthesized purine nucleosides to form stable host-guest complexes with β-cyclodextrin (β-CD) was confirmed using nuclear magnetic resonance (NMR) and mass spectrometry (ESI-MS) experiments. The in vitro antiproliferative activity of purine nucleosides and their equimolar mixtures with β-CD was tested against two types of human tumor cell line. Six adamantane-based purine nucleosides showed an antiproliferative activity in the micromolar range. Moreover, their effect was only slightly suppressed by the presence of β-CD, which was probably due to the competitive binding of the corresponding purine nucleoside inside the β-CD cavity.
Department of Chemistry Faculty of Science Masaryk University Kotlářská 2 602 00 Brno Czech Republic
Department of Experimental Biology Palacký University Šlechtitelů 27 783 71 Olomouc Czech Republic
Zobrazit více v PubMed
Jordheim L.P., Durantel D., Zoulim F., Dumotet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 2013;12:447–464. doi: 10.1038/nrd4010. PubMed DOI
Deb P.K., Deka S., Borah P., Abed S.N., Klotz K.-N. Medicinal Chemistry and Therapeutic Potential of Agonists, Antagonists and Allosteric Modulators of A1 Adenosine Receptor: Current Status and Perspectives. Curr. Pharm. Des. 2019;25:2697–2715. doi: 10.2174/1381612825666190716100509. PubMed DOI
Matušková V., Zatloukal M., Voller J., Grúz J., Pěkná Z., Briestenská K., Mistríková J., Spíchal L., Doležal K., Strnad M. New aromatic 6-substituted 2′-deoxy-9-(β)-d-ribofuranosylpurine derivatives as potential plant growth regulators. Bioorganic Med. Chem. 2020;28:115230. doi: 10.1016/j.bmc.2019.115230. PubMed DOI
Siegel D., Hui H.C., Doerffler E., Clarke M.O., Chun K., Zhang L., Neville S., Carra E., Lew W., Ross B., et al. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J. Med. Chem. 2017;60:1648–1661. doi: 10.1021/acs.jmedchem.6b01594. PubMed DOI
Veselovská L., Kudlová N., Gurská S., Lišková B., Medvedíková M., Hodek O., Tloušťová E., Milisavljevic N., Tichý M., Perlíková P., et al. Synthesis and Cytotoxic and Antiviral Activity Profiling of All-Four Isomeric Series of Pyrido-Fused 7-Deazapurines Ribonucleosides. Chem. Eur. J. 2020;26:13002–13015. doi: 10.1002/chem.202001124. PubMed DOI
Fleuti M., Bártová K., Poštová Slavětínská L., Tloušťová E., Tichý M., Gurská S., Pavliš P., Džubák P., Hajdúch M., Hocek M. Synthesis and Biological Profiling of Pyrazolo-Fused 7-Deazapurine Nucleosides. J. Org. Chem. 2020;85:10539–10551. doi: 10.1021/acs.joc.0c00928. PubMed DOI
Hulpia F., Noppen S., Schols D., Andrei G., Snoeck R., Liekens S., Vervaeke P., Van Calenbergh S. Synthesis of 3′-C-ethynyl-β-d-ribofuranose purine nucleoside library: Discovery of C7-deazapurine analogs as potent antiproliferative nucleosides. Eur. J. Med. Chem. 2018;157:248–267. doi: 10.1016/j.ejmech.2018.07.062. PubMed DOI PMC
Malthum S., Polkam N., Alaka T.R., Chepuri K., Anireddy J.S. Synthesis, characterization and biological evaluation of purine nucleoside analogues. Tetrahedron Lett. 2017;58:4166–4168. doi: 10.1016/j.tetlet.2017.09.041. DOI
Nguyen V.H., Tichý M., Rožánková S., Pohl R., Downey A.M., Doleželová E., Tloušťová E., Slapničková M., Zíková A., Hocek M. Synthesis and anti-trypanosomal activity of 3′-fluororibonucleosides derived from 7-deazapurine nucleosides. Bioorg. Med. Chem. Lett. 2021;40:127957. doi: 10.1016/j.bmcl.2021.127957. PubMed DOI
Perlíková P., Krajczyk A., Doleželová E., Slapničková M., Milisavljevic N., Poštová Slavětínská L., Tloušťová E., Gurská S., Džubák P., Hajdúch M., et al. Synthesis and Antitrypanosomal Activity of 6-Substituted 7-Methyl-7-deazapurine Nucleosides. ACS Infect. Dis. 2021;7:917–926. doi: 10.1021/acsinfecdis.1c00062. PubMed DOI
Voller J., Zatloukal M., Lenobel R., Doležal K., Béreš T., Kryštof V., Spíchal L., Niemann P., Džubák P., Hajdúch M., et al. Anticancer activity of natural cytokinins: A structure–activity relationship study. Phytochemistry. 2010;71:1350–1359. doi: 10.1016/j.phytochem.2010.04.018. PubMed DOI
Bouton J., Maes L., Karalic I., Caljon G., Van Calenberg S. Synthesis and evaluation of a collection of purine-like C-nucleosides as antikinetoplastid agents. Eur. J. Med. Chem. 2021;212:113101. doi: 10.1016/j.ejmech.2020.113101. PubMed DOI
Shelton J., Lu X., Hollenbaugh J.A., Cho J.H., Ablard F., Schinazi R.F. Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chem. Rev. 2016;116:14379–14455. doi: 10.1021/acs.chemrev.6b00209. PubMed DOI PMC
Anilkumar R.K., Bo Y., Balasubramanian S. Recent Developments in the Synthesis of Substituted Purine Nucleosides and Nucleotides. Curr. Org. Chem. 2014;18:2072–2107.
Foscolos A.-S., Papanastasiou I., Tsotinis A., Taylor M.C., Kelly J.M. Synthesis and Evaluation of Nifurtimox–Adamantane Adducts with Trypanocidal Activity. ChemMedChem. 2019;14:1227–1231. doi: 10.1002/cmdc.201900165. PubMed DOI
Ma J., Li H., Hu X., Yang L., Chen Q., Hu C., Chen Z., Tian X., Yang Y., Luo Y., et al. CMD-05, a novel promising clinical anti-diabetic drug candidate, in vivo and vitro studies. Sci. Rep. 2017;7:46628. doi: 10.1038/srep46628. PubMed DOI PMC
Jiang B.-E., Hu J., Liu H., Liu Z., Wen Y., Liu M., Zhang H.-K., Pang X., Yu L.-F. Design, synthesis, and biological evaluation of indole-based hydroxamic acid derivatives as histone deacetylase inhibitors. Eur. J. Med. Chem. 2022;227:113893. doi: 10.1016/j.ejmech.2021.113893. PubMed DOI
Ao M., Hu X., Qian Y., Li B., Zhang J., Cao Y., Zhang Y., Guo K., Qiu Y., Jiang F., et al. Discovery of new chalone adamantyl arotinoids having RXRα-modulating and anticancer activities. Bioorg. Chem. 2021;113:104961. doi: 10.1016/j.bioorg.2021.104961. PubMed DOI
Andring J.T., Fouch M., Akocak S., Angeli A., Supuran C.T., Ilies M.A., McKenna R. Structural Basis of Nanomolar Inhibition of Tumor-Associated Carbonic Anhydrase IX: X-Ray Crystallographic and Inhibition Study of Lipophilic Inhibitors with Acetazolamide Backbone. J. Med. Chem. 2020;63:13064–13075. doi: 10.1021/acs.jmedchem.0c01390. PubMed DOI
Shiryaev V.A., Skomorohov M.Y., Leonova M.V., Bormotov N.I., Serova O.A., Shishkina L.N., Agafonov A.P., Maksyutov R.A., Klimochkin Y.N. Adamantane derivatives as potential inhibitors of p37 major envelope protein and poxvirus reproduction. Design, synthesis and antiviral activity. Eur. J. Med. Chem. 2021;221:113485. doi: 10.1016/j.ejmech.2021.113485. PubMed DOI PMC
Suslov E.V., Mozhaytsev E.S., Korchagina D.V., Bormotov N.I., Yarovaya O.I., Vocho K.P., Serova O.A., Agafonov A.P., Maksyutov R.A., Shishkina L.N., et al. New chemical agents based on adamantane-monoterpene conjugates against orthopoxvirus infections. RSC Med. Chem. 2020;11:1185–1195. doi: 10.1039/D0MD00108B. PubMed DOI PMC
Georgiadis M.-O., Kourbeli V., Ioannidou V., Karakitsios E., Papanastasiou I., Tsotinis A., Komiotis D., Vocat A., Cole S.T., Taylor M.C., et al. Synthesis of diphenoxyadamantane alkylamines with pharmacological interest. Bioorg. Med. Chem. Lett. 2019;29:1278–1281. doi: 10.1016/j.bmcl.2019.04.010. PubMed DOI
Rodenko B., van der Burg A.M., Wanner M.J., Kaiser M., Brun R., Gould M., de Koning H.P., Koomen G.-J. 2,N6-Disubstituted Adenosine Analogs with Antitrypanosomal and Antimalarial Activities. Antimicrob. Agents Chemother. 2007;51:3796–3802. doi: 10.1128/AAC.00425-07. PubMed DOI PMC
Patel S.R., Gangwal R., Sangamwar A.T., Jain R. Synthesis, biological evaluation and 3D-QSAR study of hydrazide, semicarbazide and thiosemicarbazide derivatives of 4-(adamantan-1-yl)quinoline as anti-tuberculosis agents. Eur. J. Med. Chem. 2014;85:255–267. doi: 10.1016/j.ejmech.2014.07.100. PubMed DOI
Addla D., Jallapally A., Gurram D., Yogeeswari P., Sriram D., Kantevari S. Design, synthesis and evaluation of 1,2,3-triazole-adamantylacetamide hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2014;24:1974–1979. doi: 10.1016/j.bmcl.2014.02.061. PubMed DOI
Jiang B.-E., Jiang X., Zhang Q., Liang Q., Qiu Z.-L., Sun X.-B., Yang J.-J., Chen S., Yi C., Chai X., et al. From a Designer Drug to the Discovery of Selective Cannabinoid Type 2 Receptor Agonists with Favorable Pharmacokinetics Profiles for the Treatment of Systemic Sclerosis. J. Med. Chem. 2021;64:385–403. doi: 10.1021/acs.jmedchem.0c01023. PubMed DOI
Shi Y., Duan Y.-H., Ji Y.-Y., Wang Z.-L., Wu Y.-R., Gunosewoyo H., Xie X.-Y., Chen J.-Z., Yang F., Li J., et al. Amidoalkylindoles as Potent and Selective Cannabinoid Type 2 Receptor Agonists with in Vivo Efficacy in a Mouse Model of Multiple Sclerosis. J. Med. Chem. 2017;60:7067–7083. doi: 10.1021/acs.jmedchem.7b00724. PubMed DOI
Moldovan R.-P., Hausmann K., Deuther-Conrad W., Brust P. Development of Highly Affine and Selective Fluorinated Cannabinoid Type 2 Receptor Ligands. ACS Med. Chem. Lett. 2017;8:566–571. doi: 10.1021/acsmedchemlett.7b00129. PubMed DOI PMC
Knight A., Hemmings J.L., Winfield I., Leuenberger M., Frattini E., Frenguelli B.G., Dowel S.J., Lochner M., Ladds G. Discovery of Novel Adenosine Receptor Agonists That Exhibit Subtype Selectivity. J. Med. Chem. 2016;59:947–964. doi: 10.1021/acs.jmedchem.5b01402. PubMed DOI
Gao Z.-G., Blaustein J.B., Gross A.S., Melman N., Jacobson K.A. N6-Substituted adenosine derivatives: Selectivity, efficacy, and species differences at A3 adenosine receptors. Biochem. Pharmacol. 2003;65:1675–1684. doi: 10.1016/S0006-2952(03)00153-9. PubMed DOI PMC
Rouchal M., Rudolfová J., Kryštof V., Vojáčková V., Čmelík R., Vícha R. Adamantane-Substituted Purines and Their β-Cyclodextrin Complexes: Synthesis and Biological Evaluation. Int. J. Mol. Sci. 2021;22:12675. doi: 10.3390/ijms222312675. PubMed DOI PMC
Singh G., Rani S., Gawri S., Sinha S., Sehgal R. Adamantylated organosilatranes: Design, synthesis, and potential appraisal in surface modification and anti-protozoal activity. New J. Chem. 2017;41:11626–11639. doi: 10.1039/C7NJ01456B. DOI
Loftsson T., Brewster M.E. Pharmaceutical applications of cyclodextrins: Effects on drug permeation through biological membranes. J. Pharm. Pharmacol. 2011;63:1119–1135. doi: 10.1111/j.2042-7158.2011.01279.x. PubMed DOI
Tian B., Hua S., Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr. Polym. 2020;232:115805. doi: 10.1016/j.carbpol.2019.115805. PubMed DOI
Thiabaud G., Harden-Bull L., Ghang Y.-J., Sen S., Chi X., Bachman J.L., Lych V.M., Siddik Z.H., Sessler J.L. Platinum(IV)-Ferrocene Conjugates and Their Cyclodextrin Host–Guest Complexes. Inorg. Chem. 2019;58:7886–7894. doi: 10.1021/acs.inorgchem.9b00570. PubMed DOI PMC
Vaidya B., Parvathaneni V., Kulkarni N.S., Shukla S.K., Damon J.K., Sarode A., Kanabar D., Garcia J.V., Mitragotri S., Muth A., et al. Cyclodextrin modified loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. Int. J. Biol. Macromol. 2019;122:338–347. doi: 10.1016/j.ijbiomac.2018.10.181. PubMed DOI
Zhang D., Zhang J., Jiang K., Li K., Cong Y., Pu S., Jin Y., Lin J. Preparation, characterisation and antitumour activity of β-, γ- and HP-β-cyclodextrin inclusion complexes with oxalilplatin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016;152:501–508. doi: 10.1016/j.saa.2015.07.088. PubMed DOI
Taddei D., Kilian P., Slawin A.M.Z., Woollins J.D. Synthesis and full characterisation of 6-chloro-2-iodopurine, a template for the functionalisation of purines. Org. Biomol. Chem. 2004;2:665–670. doi: 10.1039/b312629c. PubMed DOI
Vícha R., Rouchal M., Kozubková Z., Kuřitka I., Marek R., Branná P., Čmelík R. Novel adamantane-bearing anilines and properties of their supramolecular complexes with b-cyclodextrin. Supramol. Chem. 2011;23:663–677. doi: 10.1080/10610278.2011.593628. DOI
Zhang C., Shokat K.M. Enhanced selectivity for inhibition of analog-sensitive protein kinase through scaffold optimizaiton. Tetrahedron. 2007;63:5832–5838. doi: 10.1016/j.tet.2007.02.089. DOI
Zhong M., Nowak I., Robins M.J. 6-(2-Alkylimidazol-1-yl)purines Undergo Regiospecific Glycosylation at N9. Org. Lett. 2005;7:4601–4603. doi: 10.1021/ol051573p. PubMed DOI
Ugarkar B.C., Castellino A.J., DaRe J.S., Ramirez-Weinhouse M., Kopcho J.J., Rosengren S., Erion M.D. Adenosine Kinase Inhibitors. 3. Synthesis, SAR, and Antiinflammatory Activity of a Series of l-Lyxofuranosyl Nucleosides. J. Med. Chem. 2003;46:4750–4760. doi: 10.1021/jm030230z. PubMed DOI
Hocek M., Holý A., Dvořáková H. Cytostatic 6-arylpurine nucleosides IV+. Synthesis of 2-substituted 6-phenylpurine ribonucleosides. Collect. Czechoslov. Chem. Commun. 2002;67:325–335. doi: 10.1135/cccc20020325. DOI
Vorbrüggen H. On Novel Fluorine Reagent in Preparative Organic Chemistry. Helv. Chim. Acta. 2011;94:947–965. doi: 10.1002/hlca.201100039. DOI
Lee S., Uttamapinant C., Verdine G.L. A Concise Synthesis of 4′-Fluoro Nucleosides. Org. Lett. 2007;9:5007–5009. doi: 10.1021/ol702222z. PubMed DOI
Tichý M., Smolén S., Tloušťová E., Pohl R., Oždian T., Hejtmánková K., Lišková B., Gurská S., Džubák P., Hajdúch M., et al. Synthesis and Cytostatic and Antiviral Profiling of Thieno-Fused 7-Deazapurine Ribonucleosides. J. Med. Chem. 2017;60:2411–2424. doi: 10.1021/acs.jmedchem.6b01766. PubMed DOI
Schneider H.-J., Hacket F., Rüdiger V., Ikeda H. NMR Studies of Cyclodextrins and Cyclodextrin Complexes. Chem. Rev. 1998;98:1755–1786. doi: 10.1021/cr970019t. PubMed DOI
Tomeček J., Čablová A., Hromádková A., Novotný J., Marek R., Durník I., Kulhánek P., Prucková Z., Rouchal M., Dastychová L., et al. Modes of Micromolar Host–Guest Binding of β-Cyclodextrin Complexes Revealed by NMR Spectroscopy in Salt Water. J. Org. Chem. 2021;86:4483–4496. doi: 10.1021/acs.joc.0c02917. PubMed DOI
Vícha R., Potáček M. Influence of catalytic system composition on formation of adamantane containing ketones. Tetrahedron. 2005;61:83–88. doi: 10.1016/j.tet.2004.10.059. DOI
Vícha R., Kuřitka I., Rouchal M., Ježková V., Zierhut A. Directing effects in nitration of 1-adamantyl bearing aromatic ketones. ARKIVOC. 2009;xii:60–80. doi: 10.3998/ark.5550190.0010.c06. DOI
Sheldrick G.M. A short history of SHELX. Acta Crystallogr. 2008;A64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI
Wang J., Li Y.-H., Pan S.-C., Li M.-F., Du W., Yin H., Li J.-H. Efficient Phosphorus-Free Chlorination of Hydroxy Aza-Arenes and Their Application in One-Pot Pharmaceutical Synthesis. Org. Process Res. Dev. 2020;24:146–153. doi: 10.1021/acs.oprd.9b00407. DOI
Lu H.-F., Zhang L.-Z., Wu D.-M., Zhou J.-T. Microwave Assisted Synthesis of 2,6-Substituted Aromatic-Aminopurine Derivatives. J. Heterocycl. Chem. 2011;48:1140–1144. doi: 10.1002/jhet.629. DOI