Adamantane-Substituted Purine Nucleosides: Synthesis, Host-Guest Complexes with β-Cyclodextrin and Biological Activity

. 2022 Dec 01 ; 23 (23) : . [epub] 20221201

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36499470

Grantová podpora
21-06553S Czech Science Foundation
CZ.02.1.01./0.0/0.0/18_046/0015974 European Regional Development Fund-Project "UP CIISB"
IGA/FT2018/001 Internal Founding Agency of Tomas Bata University in Zlín
IGA/FT/2019/007 Internal Founding Agency of Tomas Bata University in Zlín

Purine nucleosides represent an interesting group of nitrogen heterocycles, showing a wide range of biological effects. In this study, we designed and synthesized a series of 6,9-disubstituted and 2,6,9-trisubstituted purine ribonucleosides via consecutive nucleophilic aromatic substitution, glycosylation, and deprotection of the ribofuranose unit. We prepared eight new purine nucleosides bearing unique adamantylated aromatic amines at position 6. Additionally, the ability of the synthesized purine nucleosides to form stable host-guest complexes with β-cyclodextrin (β-CD) was confirmed using nuclear magnetic resonance (NMR) and mass spectrometry (ESI-MS) experiments. The in vitro antiproliferative activity of purine nucleosides and their equimolar mixtures with β-CD was tested against two types of human tumor cell line. Six adamantane-based purine nucleosides showed an antiproliferative activity in the micromolar range. Moreover, their effect was only slightly suppressed by the presence of β-CD, which was probably due to the competitive binding of the corresponding purine nucleoside inside the β-CD cavity.

Zobrazit více v PubMed

Jordheim L.P., Durantel D., Zoulim F., Dumotet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 2013;12:447–464. doi: 10.1038/nrd4010. PubMed DOI

Deb P.K., Deka S., Borah P., Abed S.N., Klotz K.-N. Medicinal Chemistry and Therapeutic Potential of Agonists, Antagonists and Allosteric Modulators of A1 Adenosine Receptor: Current Status and Perspectives. Curr. Pharm. Des. 2019;25:2697–2715. doi: 10.2174/1381612825666190716100509. PubMed DOI

Matušková V., Zatloukal M., Voller J., Grúz J., Pěkná Z., Briestenská K., Mistríková J., Spíchal L., Doležal K., Strnad M. New aromatic 6-substituted 2′-deoxy-9-(β)-d-ribofuranosylpurine derivatives as potential plant growth regulators. Bioorganic Med. Chem. 2020;28:115230. doi: 10.1016/j.bmc.2019.115230. PubMed DOI

Siegel D., Hui H.C., Doerffler E., Clarke M.O., Chun K., Zhang L., Neville S., Carra E., Lew W., Ross B., et al. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J. Med. Chem. 2017;60:1648–1661. doi: 10.1021/acs.jmedchem.6b01594. PubMed DOI

Veselovská L., Kudlová N., Gurská S., Lišková B., Medvedíková M., Hodek O., Tloušťová E., Milisavljevic N., Tichý M., Perlíková P., et al. Synthesis and Cytotoxic and Antiviral Activity Profiling of All-Four Isomeric Series of Pyrido-Fused 7-Deazapurines Ribonucleosides. Chem. Eur. J. 2020;26:13002–13015. doi: 10.1002/chem.202001124. PubMed DOI

Fleuti M., Bártová K., Poštová Slavětínská L., Tloušťová E., Tichý M., Gurská S., Pavliš P., Džubák P., Hajdúch M., Hocek M. Synthesis and Biological Profiling of Pyrazolo-Fused 7-Deazapurine Nucleosides. J. Org. Chem. 2020;85:10539–10551. doi: 10.1021/acs.joc.0c00928. PubMed DOI

Hulpia F., Noppen S., Schols D., Andrei G., Snoeck R., Liekens S., Vervaeke P., Van Calenbergh S. Synthesis of 3′-C-ethynyl-β-d-ribofuranose purine nucleoside library: Discovery of C7-deazapurine analogs as potent antiproliferative nucleosides. Eur. J. Med. Chem. 2018;157:248–267. doi: 10.1016/j.ejmech.2018.07.062. PubMed DOI PMC

Malthum S., Polkam N., Alaka T.R., Chepuri K., Anireddy J.S. Synthesis, characterization and biological evaluation of purine nucleoside analogues. Tetrahedron Lett. 2017;58:4166–4168. doi: 10.1016/j.tetlet.2017.09.041. DOI

Nguyen V.H., Tichý M., Rožánková S., Pohl R., Downey A.M., Doleželová E., Tloušťová E., Slapničková M., Zíková A., Hocek M. Synthesis and anti-trypanosomal activity of 3′-fluororibonucleosides derived from 7-deazapurine nucleosides. Bioorg. Med. Chem. Lett. 2021;40:127957. doi: 10.1016/j.bmcl.2021.127957. PubMed DOI

Perlíková P., Krajczyk A., Doleželová E., Slapničková M., Milisavljevic N., Poštová Slavětínská L., Tloušťová E., Gurská S., Džubák P., Hajdúch M., et al. Synthesis and Antitrypanosomal Activity of 6-Substituted 7-Methyl-7-deazapurine Nucleosides. ACS Infect. Dis. 2021;7:917–926. doi: 10.1021/acsinfecdis.1c00062. PubMed DOI

Voller J., Zatloukal M., Lenobel R., Doležal K., Béreš T., Kryštof V., Spíchal L., Niemann P., Džubák P., Hajdúch M., et al. Anticancer activity of natural cytokinins: A structure–activity relationship study. Phytochemistry. 2010;71:1350–1359. doi: 10.1016/j.phytochem.2010.04.018. PubMed DOI

Bouton J., Maes L., Karalic I., Caljon G., Van Calenberg S. Synthesis and evaluation of a collection of purine-like C-nucleosides as antikinetoplastid agents. Eur. J. Med. Chem. 2021;212:113101. doi: 10.1016/j.ejmech.2020.113101. PubMed DOI

Shelton J., Lu X., Hollenbaugh J.A., Cho J.H., Ablard F., Schinazi R.F. Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chem. Rev. 2016;116:14379–14455. doi: 10.1021/acs.chemrev.6b00209. PubMed DOI PMC

Anilkumar R.K., Bo Y., Balasubramanian S. Recent Developments in the Synthesis of Substituted Purine Nucleosides and Nucleotides. Curr. Org. Chem. 2014;18:2072–2107.

Foscolos A.-S., Papanastasiou I., Tsotinis A., Taylor M.C., Kelly J.M. Synthesis and Evaluation of Nifurtimox–Adamantane Adducts with Trypanocidal Activity. ChemMedChem. 2019;14:1227–1231. doi: 10.1002/cmdc.201900165. PubMed DOI

Ma J., Li H., Hu X., Yang L., Chen Q., Hu C., Chen Z., Tian X., Yang Y., Luo Y., et al. CMD-05, a novel promising clinical anti-diabetic drug candidate, in vivo and vitro studies. Sci. Rep. 2017;7:46628. doi: 10.1038/srep46628. PubMed DOI PMC

Jiang B.-E., Hu J., Liu H., Liu Z., Wen Y., Liu M., Zhang H.-K., Pang X., Yu L.-F. Design, synthesis, and biological evaluation of indole-based hydroxamic acid derivatives as histone deacetylase inhibitors. Eur. J. Med. Chem. 2022;227:113893. doi: 10.1016/j.ejmech.2021.113893. PubMed DOI

Ao M., Hu X., Qian Y., Li B., Zhang J., Cao Y., Zhang Y., Guo K., Qiu Y., Jiang F., et al. Discovery of new chalone adamantyl arotinoids having RXRα-modulating and anticancer activities. Bioorg. Chem. 2021;113:104961. doi: 10.1016/j.bioorg.2021.104961. PubMed DOI

Andring J.T., Fouch M., Akocak S., Angeli A., Supuran C.T., Ilies M.A., McKenna R. Structural Basis of Nanomolar Inhibition of Tumor-Associated Carbonic Anhydrase IX: X-Ray Crystallographic and Inhibition Study of Lipophilic Inhibitors with Acetazolamide Backbone. J. Med. Chem. 2020;63:13064–13075. doi: 10.1021/acs.jmedchem.0c01390. PubMed DOI

Shiryaev V.A., Skomorohov M.Y., Leonova M.V., Bormotov N.I., Serova O.A., Shishkina L.N., Agafonov A.P., Maksyutov R.A., Klimochkin Y.N. Adamantane derivatives as potential inhibitors of p37 major envelope protein and poxvirus reproduction. Design, synthesis and antiviral activity. Eur. J. Med. Chem. 2021;221:113485. doi: 10.1016/j.ejmech.2021.113485. PubMed DOI PMC

Suslov E.V., Mozhaytsev E.S., Korchagina D.V., Bormotov N.I., Yarovaya O.I., Vocho K.P., Serova O.A., Agafonov A.P., Maksyutov R.A., Shishkina L.N., et al. New chemical agents based on adamantane-monoterpene conjugates against orthopoxvirus infections. RSC Med. Chem. 2020;11:1185–1195. doi: 10.1039/D0MD00108B. PubMed DOI PMC

Georgiadis M.-O., Kourbeli V., Ioannidou V., Karakitsios E., Papanastasiou I., Tsotinis A., Komiotis D., Vocat A., Cole S.T., Taylor M.C., et al. Synthesis of diphenoxyadamantane alkylamines with pharmacological interest. Bioorg. Med. Chem. Lett. 2019;29:1278–1281. doi: 10.1016/j.bmcl.2019.04.010. PubMed DOI

Rodenko B., van der Burg A.M., Wanner M.J., Kaiser M., Brun R., Gould M., de Koning H.P., Koomen G.-J. 2,N6-Disubstituted Adenosine Analogs with Antitrypanosomal and Antimalarial Activities. Antimicrob. Agents Chemother. 2007;51:3796–3802. doi: 10.1128/AAC.00425-07. PubMed DOI PMC

Patel S.R., Gangwal R., Sangamwar A.T., Jain R. Synthesis, biological evaluation and 3D-QSAR study of hydrazide, semicarbazide and thiosemicarbazide derivatives of 4-(adamantan-1-yl)quinoline as anti-tuberculosis agents. Eur. J. Med. Chem. 2014;85:255–267. doi: 10.1016/j.ejmech.2014.07.100. PubMed DOI

Addla D., Jallapally A., Gurram D., Yogeeswari P., Sriram D., Kantevari S. Design, synthesis and evaluation of 1,2,3-triazole-adamantylacetamide hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2014;24:1974–1979. doi: 10.1016/j.bmcl.2014.02.061. PubMed DOI

Jiang B.-E., Jiang X., Zhang Q., Liang Q., Qiu Z.-L., Sun X.-B., Yang J.-J., Chen S., Yi C., Chai X., et al. From a Designer Drug to the Discovery of Selective Cannabinoid Type 2 Receptor Agonists with Favorable Pharmacokinetics Profiles for the Treatment of Systemic Sclerosis. J. Med. Chem. 2021;64:385–403. doi: 10.1021/acs.jmedchem.0c01023. PubMed DOI

Shi Y., Duan Y.-H., Ji Y.-Y., Wang Z.-L., Wu Y.-R., Gunosewoyo H., Xie X.-Y., Chen J.-Z., Yang F., Li J., et al. Amidoalkylindoles as Potent and Selective Cannabinoid Type 2 Receptor Agonists with in Vivo Efficacy in a Mouse Model of Multiple Sclerosis. J. Med. Chem. 2017;60:7067–7083. doi: 10.1021/acs.jmedchem.7b00724. PubMed DOI

Moldovan R.-P., Hausmann K., Deuther-Conrad W., Brust P. Development of Highly Affine and Selective Fluorinated Cannabinoid Type 2 Receptor Ligands. ACS Med. Chem. Lett. 2017;8:566–571. doi: 10.1021/acsmedchemlett.7b00129. PubMed DOI PMC

Knight A., Hemmings J.L., Winfield I., Leuenberger M., Frattini E., Frenguelli B.G., Dowel S.J., Lochner M., Ladds G. Discovery of Novel Adenosine Receptor Agonists That Exhibit Subtype Selectivity. J. Med. Chem. 2016;59:947–964. doi: 10.1021/acs.jmedchem.5b01402. PubMed DOI

Gao Z.-G., Blaustein J.B., Gross A.S., Melman N., Jacobson K.A. N6-Substituted adenosine derivatives: Selectivity, efficacy, and species differences at A3 adenosine receptors. Biochem. Pharmacol. 2003;65:1675–1684. doi: 10.1016/S0006-2952(03)00153-9. PubMed DOI PMC

Rouchal M., Rudolfová J., Kryštof V., Vojáčková V., Čmelík R., Vícha R. Adamantane-Substituted Purines and Their β-Cyclodextrin Complexes: Synthesis and Biological Evaluation. Int. J. Mol. Sci. 2021;22:12675. doi: 10.3390/ijms222312675. PubMed DOI PMC

Singh G., Rani S., Gawri S., Sinha S., Sehgal R. Adamantylated organosilatranes: Design, synthesis, and potential appraisal in surface modification and anti-protozoal activity. New J. Chem. 2017;41:11626–11639. doi: 10.1039/C7NJ01456B. DOI

Loftsson T., Brewster M.E. Pharmaceutical applications of cyclodextrins: Effects on drug permeation through biological membranes. J. Pharm. Pharmacol. 2011;63:1119–1135. doi: 10.1111/j.2042-7158.2011.01279.x. PubMed DOI

Tian B., Hua S., Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr. Polym. 2020;232:115805. doi: 10.1016/j.carbpol.2019.115805. PubMed DOI

Thiabaud G., Harden-Bull L., Ghang Y.-J., Sen S., Chi X., Bachman J.L., Lych V.M., Siddik Z.H., Sessler J.L. Platinum(IV)-Ferrocene Conjugates and Their Cyclodextrin Host–Guest Complexes. Inorg. Chem. 2019;58:7886–7894. doi: 10.1021/acs.inorgchem.9b00570. PubMed DOI PMC

Vaidya B., Parvathaneni V., Kulkarni N.S., Shukla S.K., Damon J.K., Sarode A., Kanabar D., Garcia J.V., Mitragotri S., Muth A., et al. Cyclodextrin modified loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. Int. J. Biol. Macromol. 2019;122:338–347. doi: 10.1016/j.ijbiomac.2018.10.181. PubMed DOI

Zhang D., Zhang J., Jiang K., Li K., Cong Y., Pu S., Jin Y., Lin J. Preparation, characterisation and antitumour activity of β-, γ- and HP-β-cyclodextrin inclusion complexes with oxalilplatin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016;152:501–508. doi: 10.1016/j.saa.2015.07.088. PubMed DOI

Taddei D., Kilian P., Slawin A.M.Z., Woollins J.D. Synthesis and full characterisation of 6-chloro-2-iodopurine, a template for the functionalisation of purines. Org. Biomol. Chem. 2004;2:665–670. doi: 10.1039/b312629c. PubMed DOI

Vícha R., Rouchal M., Kozubková Z., Kuřitka I., Marek R., Branná P., Čmelík R. Novel adamantane-bearing anilines and properties of their supramolecular complexes with b-cyclodextrin. Supramol. Chem. 2011;23:663–677. doi: 10.1080/10610278.2011.593628. DOI

Zhang C., Shokat K.M. Enhanced selectivity for inhibition of analog-sensitive protein kinase through scaffold optimizaiton. Tetrahedron. 2007;63:5832–5838. doi: 10.1016/j.tet.2007.02.089. DOI

Zhong M., Nowak I., Robins M.J. 6-(2-Alkylimidazol-1-yl)purines Undergo Regiospecific Glycosylation at N9. Org. Lett. 2005;7:4601–4603. doi: 10.1021/ol051573p. PubMed DOI

Ugarkar B.C., Castellino A.J., DaRe J.S., Ramirez-Weinhouse M., Kopcho J.J., Rosengren S., Erion M.D. Adenosine Kinase Inhibitors. 3. Synthesis, SAR, and Antiinflammatory Activity of a Series of l-Lyxofuranosyl Nucleosides. J. Med. Chem. 2003;46:4750–4760. doi: 10.1021/jm030230z. PubMed DOI

Hocek M., Holý A., Dvořáková H. Cytostatic 6-arylpurine nucleosides IV+. Synthesis of 2-substituted 6-phenylpurine ribonucleosides. Collect. Czechoslov. Chem. Commun. 2002;67:325–335. doi: 10.1135/cccc20020325. DOI

Vorbrüggen H. On Novel Fluorine Reagent in Preparative Organic Chemistry. Helv. Chim. Acta. 2011;94:947–965. doi: 10.1002/hlca.201100039. DOI

Lee S., Uttamapinant C., Verdine G.L. A Concise Synthesis of 4′-Fluoro Nucleosides. Org. Lett. 2007;9:5007–5009. doi: 10.1021/ol702222z. PubMed DOI

Tichý M., Smolén S., Tloušťová E., Pohl R., Oždian T., Hejtmánková K., Lišková B., Gurská S., Džubák P., Hajdúch M., et al. Synthesis and Cytostatic and Antiviral Profiling of Thieno-Fused 7-Deazapurine Ribonucleosides. J. Med. Chem. 2017;60:2411–2424. doi: 10.1021/acs.jmedchem.6b01766. PubMed DOI

Schneider H.-J., Hacket F., Rüdiger V., Ikeda H. NMR Studies of Cyclodextrins and Cyclodextrin Complexes. Chem. Rev. 1998;98:1755–1786. doi: 10.1021/cr970019t. PubMed DOI

Tomeček J., Čablová A., Hromádková A., Novotný J., Marek R., Durník I., Kulhánek P., Prucková Z., Rouchal M., Dastychová L., et al. Modes of Micromolar Host–Guest Binding of β-Cyclodextrin Complexes Revealed by NMR Spectroscopy in Salt Water. J. Org. Chem. 2021;86:4483–4496. doi: 10.1021/acs.joc.0c02917. PubMed DOI

Vícha R., Potáček M. Influence of catalytic system composition on formation of adamantane containing ketones. Tetrahedron. 2005;61:83–88. doi: 10.1016/j.tet.2004.10.059. DOI

Vícha R., Kuřitka I., Rouchal M., Ježková V., Zierhut A. Directing effects in nitration of 1-adamantyl bearing aromatic ketones. ARKIVOC. 2009;xii:60–80. doi: 10.3998/ark.5550190.0010.c06. DOI

Sheldrick G.M. A short history of SHELX. Acta Crystallogr. 2008;A64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI

Wang J., Li Y.-H., Pan S.-C., Li M.-F., Du W., Yin H., Li J.-H. Efficient Phosphorus-Free Chlorination of Hydroxy Aza-Arenes and Their Application in One-Pot Pharmaceutical Synthesis. Org. Process Res. Dev. 2020;24:146–153. doi: 10.1021/acs.oprd.9b00407. DOI

Lu H.-F., Zhang L.-Z., Wu D.-M., Zhou J.-T. Microwave Assisted Synthesis of 2,6-Substituted Aromatic-Aminopurine Derivatives. J. Heterocycl. Chem. 2011;48:1140–1144. doi: 10.1002/jhet.629. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...