Adamantane-Substituted Purines and Their β-Cyclodextrin Complexes: Synthesis and Biological Activity

. 2021 Nov 24 ; 22 (23) : . [epub] 20211124

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34884480

Grantová podpora
IGA/FT/2021/001 Tomas Bata University in Zlín

Cyclin-dependent kinases (CDKs) play an important role in the cell-division cycle. Synthetic inhibitors of CDKs are based on 2,6,9-trisubstituted purines and are developed as potential anticancer drugs; however, they have low solubility in water. In this study, we proved that the pharmaco-chemical properties of purine-based inhibitors can be improved by appropriate substitution with the adamantane moiety. We prepared ten new purine derivatives with adamantane skeletons that were linked at position 6 using phenylene spacers of variable geometry and polarity. We demonstrated that the adamantane skeleton does not compromise the biological activity, and some of the new purines displayed even higher inhibition activity towards CDK2/cyclin E than the parental compounds. These findings were supported by a docking study, which showed an adamantane scaffold inside the binding pocket participating in the complex stabilisation with non-polar interactions. In addition, we demonstrated that β-cyclodextrin (CD) increases the drug's solubility in water, although this is at the cost of reducing the biochemical and cellular effect. Most likely, the drug concentration, which is necessary for target engagement, was decreased by competitive drug binding within the complex with β-CD.

Zobrazit více v PubMed

Malumbres M., Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 2005;30:630–641. doi: 10.1016/j.tibs.2005.09.005. PubMed DOI

Shapiro G.I. Cyclin-dependent kinases pathways as targets for cancer treatment. J. Clin. Oncol. 2006;24:1770–1783. doi: 10.1200/JCO.2005.03.7689. PubMed DOI

Lapenna S., Giordano A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov. 2009;8:547–566. doi: 10.1038/nrd2907. PubMed DOI

Asghar U., Witkiewicz A.K., Turner N.C., Knudsen E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 2015;14:130–146. doi: 10.1038/nrd4504. PubMed DOI PMC

Hermanová D., Jorda R., Kryštof V. How selective are clinical CDK4/6 inhibitors? Med. Res. Rev. 2021;41:1578–1598. doi: 10.1002/med.21769. PubMed DOI

Legraverend M., Grierson D.S. The purines: Potent and versatile small molecule inhibitors and modulators of key biological targets. Bioorg. Med. Chem. 2006;14:3987–4006. doi: 10.1016/j.bmc.2005.12.060. PubMed DOI

Veselý J., Havlíček L., Strnad M., Blow J.J., Donella-Deana A., Pinna L., Letham D.S., Kato J.-Y., Detivaud L., Leclerc S., et al. Inhibition of cyclin-dependent kinases by purine analogues. Eur. J. Biochem. 1994;224:771–786. doi: 10.1111/j.1432-1033.1994.00771.x. PubMed DOI

Meijer L., Borgne A., Mulner O., Chong J.P.J., Blow J.J., Inagaki N., Inagaki M., Delcros J.-G., Moulinoux J.-P. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 1997;243:527–536. doi: 10.1111/j.1432-1033.1997.t01-2-00527.x. PubMed DOI

Gray N.S., Wodicka L., Thunnissen A.-M.W.H., Norman T.C., Kwon S., Espinoza F.H., Morgan D.O., Barnes G., LeClerc S., Meijer L., et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science. 1998;281:533–538. doi: 10.1126/science.281.5376.533. PubMed DOI

Kryštof R.V., Lenobel L., Havlíček M., Kuzma M., Strnad M. Synthesis and bilogical activity of olomoucine II. Bioorg. Med. Chem. Lett. 2002;12:3283–3286. doi: 10.1016/S0960-894X(02)00693-5. PubMed DOI

Gucký T., Jorda R., Zatloukal M., Bazgier V., Berka K., Řezníčková E., Béres T., Strnad M., Kryštof V. A novel series of highly potent 2,6,9-trisubstituted purine cyclin-dependent kinase inhibitors. J. Med. Chem. 2013;56:6234–6247. doi: 10.1021/jm4006884. PubMed DOI

Jorda R., Paruch K., Kryštof V. Cyclin-dependent kinase inhibitors inspired by roscovitine: Purine bioisosteres. Curr. Pharm. Design. 2012;18:2974–2980. doi: 10.2174/138161212800672804. PubMed DOI

Tadesse S., Caldon E.C., Tilley W., Wang S. Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update. J. Med. Chem. 2019;62:4233–4251. doi: 10.1021/acs.jmedchem.8b01469. PubMed DOI

Otyepka M., Kryštof V., Havlíček L., Siglerová V., Strnad M., Koča J. Docking-based developtment of purine-like inhibitor of cyclin-dependent kinase-2. J. Med. Chem. 2000;43:2506–2513. doi: 10.1021/jm990506w. PubMed DOI

Jorda R., Havlíček L., McNae I.W., Walkinshaw M.D., Voller J., Šturc A., Navrátilová J., Kuzma M., Mistrík M., Bártek J., et al. Pyrazolo[4,3-d] bioisostere of roscovitine: Evaluation of a novel selective inhibitor of cyclin-dependent kinases with antiproliferative activity. J. Med. Chem. 2011;54:2980–2993. doi: 10.1021/jm200064p. PubMed DOI

Vermeulen H., Strnad M., Kryštof V., Havlíček L., van der Aa A., Lenjou M., Nijs G., Rodrigus J., Stockman B., van Onckelen H., et al. Antiproliferative effect of plant cytokinin analogues with an inhibitory activity on cyclin-dependent kinases. Leukemia. 2002;16:299–305. doi: 10.1038/sj.leu.2402378. PubMed DOI

Lee K., Ren T., Côté M., Gholamreza B., Misasi J., Bruchez A., Cunningham J. Inhibition of Ebola virus infection: Identification of Niemann-Pick C1 as the target by optimization of a chemical probe. ACS Med. Chem. Lett. 2013;4:239–243. doi: 10.1021/ml300370k. PubMed DOI PMC

Torres E., Fernández R., Miquet S., Font-Bardia M., Vanderlinden E., Naesens L., Vázquez S. Synthesis and anti-influenza A virus activity of 2,2-dialkylamantadines and related compounds. ACS Med. Chem. Lett. 2012;3:1065–1069. doi: 10.1021/ml300279b. PubMed DOI PMC

Göktaş F., Vanderlinden E., Naesens L., Cesur N., Cesur Z. Microwave assisted synthesis and anti-influenza virus activity of 1-adamantyl substituted N-(1-thia-4-azaspiro[4.5]decan-4-yl)carboxamide derivatives. Bioorg. Med. Chem. 2012;20:7155–7159. doi: 10.1016/j.bmc.2012.09.064. PubMed DOI

Kwon S.W., Kang S.K., Lee J.H., Bok J.H., Kim C.H., Rhee S.D., Jung W.H., Kim H.Y., Bae M.A., Song J.S., et al. Synthesis and 11β hydroxysteroid dehydrogenase 1 inhibition of thiazolidine derivatives with an adamantyl group. Bioorg. Med. Chem. Lett. 2011;21:435–439. doi: 10.1016/j.bmcl.2010.10.123. PubMed DOI

Žák F., Turánek J., Kroutil A., Sova P., Mistr A., Poulová A., Mikolin P., Žák Z., Kašná A., Záluská D., et al. Platinum(IV) complex with adamantylamine as nonleaving amine group: Synthesis, characterization and in vitro antitumor activity against panel of cisplatin-resistant cancer cell lines. J. Med. Chem. 2004;47:761–763. doi: 10.1021/jm030858+. PubMed DOI

Andring J.T., Fouch M.A., Akocak S., Angeli A., Supurnan C.T., Ilies M.A., McKenna R. Structural Basis of Nanomolar Inhibition of Tumor-Associated Carbonic Anhydrase IX: X-Ray Crystallographic and Inhibition Study of Lipophilic Inhibitors with Acetazolamide Backbone. J. Med. Chem. 2020;63:13064–13075. doi: 10.1021/acs.jmedchem.0c01390. PubMed DOI

Marson C.M. New and unusual scaffolds in medicinal chemistry. Chem. Soc. Rev. 2011;40:5514–5533. doi: 10.1039/c1cs15119c. PubMed DOI

Hwang S.H., Tsai H.-J., Liu J.-Y., Morisseau C., Hammock B.D. Orally bioavailable potent soluble epoxide hydrolase inhibitors. J. Med. Chem. 2007;50:3825–3840. doi: 10.1021/jm070270t. PubMed DOI PMC

Nakamura Y., Fujimoto T., Ogawa Y., Sugita C., Miyazaki S., Tamaki K., Takahashi M., Matsui Y., Nagayama T., Manabe K., et al. Discovery of DS-8108b, a novel orally bioavailable renin inhibitor. ACS Med. Chem. Lett. 2012;3:754–758. doi: 10.1021/ml300168e. PubMed DOI PMC

Jia L., Tomaszewski J.E., Hanrahan C., Coward L., Noker P., Gorman G., Nikonenko B., Protopopova M. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br. J. Pharmacol. 2005;144:80–87. doi: 10.1038/sj.bjp.0705984. PubMed DOI PMC

Baraldi P.G., Saponaro G., Moorman A.R., Romagnoli R., Preti D., Baraldi S., Ruggiero E., Varani K., Targa M., Vincenzi F., et al. 7-Oxo-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxamides as CB2 cannabinoid receptor ligands: Structural investigation around a novel class of full agonists. J. Med. Chem. 2012;55:6608–6623. doi: 10.1021/jm300763w. PubMed DOI

Liu J., Obando D., Liao V., Lifa T., Codd R. The many faces of the adamantyl group in drug design. Eur. J. Med. Chem. 2011;46:1949–1963. doi: 10.1016/j.ejmech.2011.01.047. PubMed DOI

Wanka L., Iqbal K., Schreiner P.R. The lipophilic bullet hits the targets: Medicinal chemistry of adamantane derivatives. Chem. Rev. 2013;113:3516–3604. doi: 10.1021/cr100264t. PubMed DOI PMC

Spilovská K., Zemek F., Korabečný J., Nepovimová E., Soukup O., Windish M., Kuča K. Adamantane—A Lead Structure for Drugs in Clinical Practise. Curr. Med. Chem. 2016;23:3245–3266. doi: 10.2174/0929867323666160525114026. PubMed DOI

Crini G. Review: A history of cyclodextrins. Chem. Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p. PubMed DOI

Rekharsky M.V., Inoue Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998;98:1875–1918. doi: 10.1021/cr970015o. PubMed DOI

Mendonça E.A.M., Lira M.C.B., Rabello M.M., Cavalcanti I.M.F., Galdino S.L., Pitta I.R., Lima M.C.A., Pitta M.G.R., Hernandes M.Z., Santos-Magalhães N.S. Enhanced antiproliferative activity of the new anticancer candidate LPSF/AC04 in cyclodextrin inclusion complexes encapsulated into liposomes. AAPS PharmSciTech. 2012;13:1355–1366. doi: 10.1208/s12249-012-9853-9. PubMed DOI PMC

Dreassi E., Zizzari A.T., Mori M., Filipi I., Belfiore A., Naldini A., Carraro F., Santucci A., Schenone S., Botta M. 2-Hydroxypropyl-β-cyclodextrin strongly improves water solubility and anti-proliferative activity of pyrazolo[3,4-d]pyrimidines Src-Abl dual inhibitors. Eur. J. Med. Chem. 2010;45:5958–5964. doi: 10.1016/j.ejmech.2010.09.062. PubMed DOI

Azuma H., Aizawa Y., Higashitani N., Tsumori T., Kojima-Yuasa A., Matsui-Yuasa I., Nagasaki T. Biological activity of water-soluble inclusion complexes of 1’-acetoxychavicol acetate with cyclodextrins. Bioorg. Med. Chem. 2011;19:3855–3863. doi: 10.1016/j.bmc.2011.04.038. PubMed DOI

Zhang D., Zhang J., Jiang K., Li K., Cong Y., Pu S., Jin Y., Lin J. Preparation, characterisation and antitumour activity of β-, γ- and HP-β-cyclodextrin inclusion complexes with oxalilplatin. Spectroc. Acta Pt. A Molec. Biomolec. Spectr. 2016;152:501–508. doi: 10.1016/j.saa.2015.07.088. PubMed DOI

Vaidya B., Parvathaneni V., Kulkarni N.S., Shukla S.K., Damon J.K., Sarode A., Kanabar D., Garcia J.V., Mitragotri S., Muth A., et al. Cyclodextrin modified loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. Int. J. Biol. Macromol. 2019;122:338–347. doi: 10.1016/j.ijbiomac.2018.10.181. PubMed DOI

Thiabaud G., Harden-Bull L., Ghang Y.-J., Sen S., Chi X., Bachman J.L., Lych V.M., Siddik Z.H., Sessler J.L. Platinum(IV)-Ferrocene Conjugates and Their Cyclodextrin Host–Guest Complexes. Inorg. Chem. 2019;58:7886–7894. doi: 10.1021/acs.inorgchem.9b00570. PubMed DOI PMC

Tian B., Hua S., Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr. Polym. 2020;232:115805. doi: 10.1016/j.carbpol.2019.115805. PubMed DOI

Oumata M., Bettayeb K., Ferandin Y., Demange L., Lopez-Giral A., Goddard M.-L., Myrianthopoulos V., Mikros E., Flajolet M., Greengard P., et al. Roscovitine-derived, dual-specifity inhibitors of cyclin-dependent kinases and casein kinases 1. J. Med. Chem. 2008;51:5229–5242. doi: 10.1021/jm800109e. PubMed DOI

Vícha R., Rouchal M., Kozubková Z., Kuřitka I., Marek R., Branná P., Čmelík R. Novel adamantane-bearing anilines and properties of their supramolecular complexes with β-cyclodextrin. Supramol. Chem. 2011;23:663–677. doi: 10.1080/10610278.2011.593628. DOI

Rouchal M., Matelová A., Pires de Carvalho F., Bernat R., Grbić D., Kuřitka I., Babinský M., Marek R., Čmelík R., Vícha R. Adamantane-bearing benzylamines and benzylamides: Novel building blocks for supramolecular systems with finely tuned binding properties toward β-cyclodextrin. Supramol. Chem. 2013;25:349–361. doi: 10.1080/10610278.2013.783916. DOI

Fioriny M.T., Abell C. Solution-phase synthesis of 2,6,9-trisubstituted purines. Tetrahedron Lett. 1998;39:1827–1830. doi: 10.1016/S0040-4039(98)00098-7. DOI

Berry D.J., DiGiovanna C.V., Metrick S.S., Murugan R. Catalysis by 4-dialkylaminopyridines. Arkivoc. 2001;2:944–964. doi: 10.3998/ark.5550190.0002.114. DOI

Schow S.R., Mackman R.L., Blum C.L., Brooks E., Horsma A.G., Joly A., Kerwar S.S., Lee G., Shiffman D., Nelson M.G., et al. Synthesis and activity of 2,6,9-trisubstituted purines. Bioorg. Med. Chem. Lett. 1997;7:2697–2702. doi: 10.1016/S0960-894X(97)10076-2. DOI

Chang Y.-T., Gray N.S., Rosania G.R., Sutherlin D.P., Kwon S., Norman T.C., Sarohia R., Leost M., Meijer L., Schultz P.G. Synthesis and application of functionally diverse 2,6,9-trisubstituted purines libraries as CDK inhibitors. Chem. Biol. 1999;6:361–375. doi: 10.1016/S1074-5521(99)80048-9. PubMed DOI

Oumata N., Ferandin Y., Meijer L., Galons H. Practical synthesis of roscovitine and CR8. Org. Process Res. Dev. 2009;13:641–644. doi: 10.1021/op800284k. DOI

Hloušková N., Rouchal M., Nečas M., Vícha R. 2,6-Dichloro-7-isopropyl-7H-purine. Acta Crystallogr. Sect. E Struct. Rep. Online. 2012;68:o1585. doi: 10.1107/S160053681201879X. PubMed DOI PMC

Rouchal M., Nečas M., Vícha R. 4-(1-Adamantylmethyl)-N-(2-chloro-9-isopropyl-9H-purin-6-yl)aniline. Acta Crystallogr. Sect. E Struct. Rep. Online. 2009;65:o1676. doi: 10.1107/S1600536809023629. PubMed DOI PMC

Rouchal M., Nečas M., de Carvalho F.P., Vícha R. 2-(1-Adamantyl)-1-{4-[(2-chloro-9-isopropyl-9H-purin-6-yl)aminomethyl]phenyl}ethanol. Acta Crystallogr. Sect. E Struct. Rep. Online. 2009;65:o298–o299. doi: 10.1107/S160053680900052X. PubMed DOI PMC

Popowycz F., Fornet G., Schneider C., Bettayeb K., Ferandin Y., Lamigeon C., Tirado O.M., Mateo-Lozano S., Notario V., Colas P., et al. Pyrazolo[1,5-a]triazine as a purine bioisostere: Access to potent cyclin-dependent kinase inhibitor (R)-roscovitine analogue. J. Med. Chem. 2009;52:655–663. doi: 10.1021/jm801340z. PubMed DOI PMC

Chen P., Lee N.V., Hu W., Xu M., Ferre R.A., Lam H., Bergqist S., Solowiej J., Diehl W., He Z.-A., et al. Spectrum and Degree of CDK Drug Interactions Predicts Clinical Performance. Mol. Cancer Ther. 2016;15:2273–2281. doi: 10.1158/1535-7163.MCT-16-0300. PubMed DOI

Vícha R., Potáček M. Influence of Catalytic System Composition on Formation of Adamantane Containing Ketones. Tetrahedron. 2005;61:83–88. doi: 10.1016/j.tet.2004.10.059. DOI

Halgren T.H. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996;17:490–519. doi: 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P. DOI

De Azevedo W.F., Leclerc S., Meijer L., Havlíček L., Strnad M., Kim S.-H. Inhibition of Cyclin-Dependent Kinases by Purine Analogues. Eur. J. Biochem. 1997;243:518–526. doi: 10.1111/j.1432-1033.1997.0518a.x. PubMed DOI

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Comp. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Dallakyan S., Olson A.J. Small-Molecule Library Screening by Docking with PyRx. In: Hempel J., Williams C., Hong C., editors. Chemical Biology. Methods in Molecular Biology. Volume 1263. Humana Press; New York, NY, USA: 2015. PubMed DOI

Adasme M.F., Linnemann K.L., Bolz S.N., Kaiser F., Salentin S., Haupt V.J., Schroeder M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucl. Acids Res. 2021;49:W530–W534. doi: 10.1093/nar/gkab294. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...