Adamantane-Substituted Purines and Their β-Cyclodextrin Complexes: Synthesis and Biological Activity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2021/001
Tomas Bata University in Zlín
PubMed
34884480
PubMed Central
PMC8657435
DOI
10.3390/ijms222312675
PII: ijms222312675
Knihovny.cz E-zdroje
- Klíčová slova
- 2,6,9-trisubstituted purine, adamantane, cyclin-dependent kinase, cytotoxicity, molecular docking, β-cyclodextrin,
- MeSH
- adamantan chemie MeSH
- beta-cyklodextriny chemie MeSH
- buňky K562 MeSH
- cyklin-dependentní kinasa 2 antagonisté a inhibitory MeSH
- inhibitory proteinkinas farmakologie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- protinádorové látky chemie farmakologie MeSH
- puriny chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adamantan MeSH
- beta-cyklodextriny MeSH
- CDK2 protein, human MeSH Prohlížeč
- cyklin-dependentní kinasa 2 MeSH
- inhibitory proteinkinas MeSH
- protinádorové látky MeSH
- puriny MeSH
Cyclin-dependent kinases (CDKs) play an important role in the cell-division cycle. Synthetic inhibitors of CDKs are based on 2,6,9-trisubstituted purines and are developed as potential anticancer drugs; however, they have low solubility in water. In this study, we proved that the pharmaco-chemical properties of purine-based inhibitors can be improved by appropriate substitution with the adamantane moiety. We prepared ten new purine derivatives with adamantane skeletons that were linked at position 6 using phenylene spacers of variable geometry and polarity. We demonstrated that the adamantane skeleton does not compromise the biological activity, and some of the new purines displayed even higher inhibition activity towards CDK2/cyclin E than the parental compounds. These findings were supported by a docking study, which showed an adamantane scaffold inside the binding pocket participating in the complex stabilisation with non-polar interactions. In addition, we demonstrated that β-cyclodextrin (CD) increases the drug's solubility in water, although this is at the cost of reducing the biochemical and cellular effect. Most likely, the drug concentration, which is necessary for target engagement, was decreased by competitive drug binding within the complex with β-CD.
Zobrazit více v PubMed
Malumbres M., Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 2005;30:630–641. doi: 10.1016/j.tibs.2005.09.005. PubMed DOI
Shapiro G.I. Cyclin-dependent kinases pathways as targets for cancer treatment. J. Clin. Oncol. 2006;24:1770–1783. doi: 10.1200/JCO.2005.03.7689. PubMed DOI
Lapenna S., Giordano A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov. 2009;8:547–566. doi: 10.1038/nrd2907. PubMed DOI
Asghar U., Witkiewicz A.K., Turner N.C., Knudsen E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 2015;14:130–146. doi: 10.1038/nrd4504. PubMed DOI PMC
Hermanová D., Jorda R., Kryštof V. How selective are clinical CDK4/6 inhibitors? Med. Res. Rev. 2021;41:1578–1598. doi: 10.1002/med.21769. PubMed DOI
Legraverend M., Grierson D.S. The purines: Potent and versatile small molecule inhibitors and modulators of key biological targets. Bioorg. Med. Chem. 2006;14:3987–4006. doi: 10.1016/j.bmc.2005.12.060. PubMed DOI
Veselý J., Havlíček L., Strnad M., Blow J.J., Donella-Deana A., Pinna L., Letham D.S., Kato J.-Y., Detivaud L., Leclerc S., et al. Inhibition of cyclin-dependent kinases by purine analogues. Eur. J. Biochem. 1994;224:771–786. doi: 10.1111/j.1432-1033.1994.00771.x. PubMed DOI
Meijer L., Borgne A., Mulner O., Chong J.P.J., Blow J.J., Inagaki N., Inagaki M., Delcros J.-G., Moulinoux J.-P. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 1997;243:527–536. doi: 10.1111/j.1432-1033.1997.t01-2-00527.x. PubMed DOI
Gray N.S., Wodicka L., Thunnissen A.-M.W.H., Norman T.C., Kwon S., Espinoza F.H., Morgan D.O., Barnes G., LeClerc S., Meijer L., et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science. 1998;281:533–538. doi: 10.1126/science.281.5376.533. PubMed DOI
Kryštof R.V., Lenobel L., Havlíček M., Kuzma M., Strnad M. Synthesis and bilogical activity of olomoucine II. Bioorg. Med. Chem. Lett. 2002;12:3283–3286. doi: 10.1016/S0960-894X(02)00693-5. PubMed DOI
Gucký T., Jorda R., Zatloukal M., Bazgier V., Berka K., Řezníčková E., Béres T., Strnad M., Kryštof V. A novel series of highly potent 2,6,9-trisubstituted purine cyclin-dependent kinase inhibitors. J. Med. Chem. 2013;56:6234–6247. doi: 10.1021/jm4006884. PubMed DOI
Jorda R., Paruch K., Kryštof V. Cyclin-dependent kinase inhibitors inspired by roscovitine: Purine bioisosteres. Curr. Pharm. Design. 2012;18:2974–2980. doi: 10.2174/138161212800672804. PubMed DOI
Tadesse S., Caldon E.C., Tilley W., Wang S. Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update. J. Med. Chem. 2019;62:4233–4251. doi: 10.1021/acs.jmedchem.8b01469. PubMed DOI
Otyepka M., Kryštof V., Havlíček L., Siglerová V., Strnad M., Koča J. Docking-based developtment of purine-like inhibitor of cyclin-dependent kinase-2. J. Med. Chem. 2000;43:2506–2513. doi: 10.1021/jm990506w. PubMed DOI
Jorda R., Havlíček L., McNae I.W., Walkinshaw M.D., Voller J., Šturc A., Navrátilová J., Kuzma M., Mistrík M., Bártek J., et al. Pyrazolo[4,3-d] bioisostere of roscovitine: Evaluation of a novel selective inhibitor of cyclin-dependent kinases with antiproliferative activity. J. Med. Chem. 2011;54:2980–2993. doi: 10.1021/jm200064p. PubMed DOI
Vermeulen H., Strnad M., Kryštof V., Havlíček L., van der Aa A., Lenjou M., Nijs G., Rodrigus J., Stockman B., van Onckelen H., et al. Antiproliferative effect of plant cytokinin analogues with an inhibitory activity on cyclin-dependent kinases. Leukemia. 2002;16:299–305. doi: 10.1038/sj.leu.2402378. PubMed DOI
Lee K., Ren T., Côté M., Gholamreza B., Misasi J., Bruchez A., Cunningham J. Inhibition of Ebola virus infection: Identification of Niemann-Pick C1 as the target by optimization of a chemical probe. ACS Med. Chem. Lett. 2013;4:239–243. doi: 10.1021/ml300370k. PubMed DOI PMC
Torres E., Fernández R., Miquet S., Font-Bardia M., Vanderlinden E., Naesens L., Vázquez S. Synthesis and anti-influenza A virus activity of 2,2-dialkylamantadines and related compounds. ACS Med. Chem. Lett. 2012;3:1065–1069. doi: 10.1021/ml300279b. PubMed DOI PMC
Göktaş F., Vanderlinden E., Naesens L., Cesur N., Cesur Z. Microwave assisted synthesis and anti-influenza virus activity of 1-adamantyl substituted N-(1-thia-4-azaspiro[4.5]decan-4-yl)carboxamide derivatives. Bioorg. Med. Chem. 2012;20:7155–7159. doi: 10.1016/j.bmc.2012.09.064. PubMed DOI
Kwon S.W., Kang S.K., Lee J.H., Bok J.H., Kim C.H., Rhee S.D., Jung W.H., Kim H.Y., Bae M.A., Song J.S., et al. Synthesis and 11β hydroxysteroid dehydrogenase 1 inhibition of thiazolidine derivatives with an adamantyl group. Bioorg. Med. Chem. Lett. 2011;21:435–439. doi: 10.1016/j.bmcl.2010.10.123. PubMed DOI
Žák F., Turánek J., Kroutil A., Sova P., Mistr A., Poulová A., Mikolin P., Žák Z., Kašná A., Záluská D., et al. Platinum(IV) complex with adamantylamine as nonleaving amine group: Synthesis, characterization and in vitro antitumor activity against panel of cisplatin-resistant cancer cell lines. J. Med. Chem. 2004;47:761–763. doi: 10.1021/jm030858+. PubMed DOI
Andring J.T., Fouch M.A., Akocak S., Angeli A., Supurnan C.T., Ilies M.A., McKenna R. Structural Basis of Nanomolar Inhibition of Tumor-Associated Carbonic Anhydrase IX: X-Ray Crystallographic and Inhibition Study of Lipophilic Inhibitors with Acetazolamide Backbone. J. Med. Chem. 2020;63:13064–13075. doi: 10.1021/acs.jmedchem.0c01390. PubMed DOI
Marson C.M. New and unusual scaffolds in medicinal chemistry. Chem. Soc. Rev. 2011;40:5514–5533. doi: 10.1039/c1cs15119c. PubMed DOI
Hwang S.H., Tsai H.-J., Liu J.-Y., Morisseau C., Hammock B.D. Orally bioavailable potent soluble epoxide hydrolase inhibitors. J. Med. Chem. 2007;50:3825–3840. doi: 10.1021/jm070270t. PubMed DOI PMC
Nakamura Y., Fujimoto T., Ogawa Y., Sugita C., Miyazaki S., Tamaki K., Takahashi M., Matsui Y., Nagayama T., Manabe K., et al. Discovery of DS-8108b, a novel orally bioavailable renin inhibitor. ACS Med. Chem. Lett. 2012;3:754–758. doi: 10.1021/ml300168e. PubMed DOI PMC
Jia L., Tomaszewski J.E., Hanrahan C., Coward L., Noker P., Gorman G., Nikonenko B., Protopopova M. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br. J. Pharmacol. 2005;144:80–87. doi: 10.1038/sj.bjp.0705984. PubMed DOI PMC
Baraldi P.G., Saponaro G., Moorman A.R., Romagnoli R., Preti D., Baraldi S., Ruggiero E., Varani K., Targa M., Vincenzi F., et al. 7-Oxo-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxamides as CB2 cannabinoid receptor ligands: Structural investigation around a novel class of full agonists. J. Med. Chem. 2012;55:6608–6623. doi: 10.1021/jm300763w. PubMed DOI
Liu J., Obando D., Liao V., Lifa T., Codd R. The many faces of the adamantyl group in drug design. Eur. J. Med. Chem. 2011;46:1949–1963. doi: 10.1016/j.ejmech.2011.01.047. PubMed DOI
Wanka L., Iqbal K., Schreiner P.R. The lipophilic bullet hits the targets: Medicinal chemistry of adamantane derivatives. Chem. Rev. 2013;113:3516–3604. doi: 10.1021/cr100264t. PubMed DOI PMC
Spilovská K., Zemek F., Korabečný J., Nepovimová E., Soukup O., Windish M., Kuča K. Adamantane—A Lead Structure for Drugs in Clinical Practise. Curr. Med. Chem. 2016;23:3245–3266. doi: 10.2174/0929867323666160525114026. PubMed DOI
Crini G. Review: A history of cyclodextrins. Chem. Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p. PubMed DOI
Rekharsky M.V., Inoue Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998;98:1875–1918. doi: 10.1021/cr970015o. PubMed DOI
Mendonça E.A.M., Lira M.C.B., Rabello M.M., Cavalcanti I.M.F., Galdino S.L., Pitta I.R., Lima M.C.A., Pitta M.G.R., Hernandes M.Z., Santos-Magalhães N.S. Enhanced antiproliferative activity of the new anticancer candidate LPSF/AC04 in cyclodextrin inclusion complexes encapsulated into liposomes. AAPS PharmSciTech. 2012;13:1355–1366. doi: 10.1208/s12249-012-9853-9. PubMed DOI PMC
Dreassi E., Zizzari A.T., Mori M., Filipi I., Belfiore A., Naldini A., Carraro F., Santucci A., Schenone S., Botta M. 2-Hydroxypropyl-β-cyclodextrin strongly improves water solubility and anti-proliferative activity of pyrazolo[3,4-d]pyrimidines Src-Abl dual inhibitors. Eur. J. Med. Chem. 2010;45:5958–5964. doi: 10.1016/j.ejmech.2010.09.062. PubMed DOI
Azuma H., Aizawa Y., Higashitani N., Tsumori T., Kojima-Yuasa A., Matsui-Yuasa I., Nagasaki T. Biological activity of water-soluble inclusion complexes of 1’-acetoxychavicol acetate with cyclodextrins. Bioorg. Med. Chem. 2011;19:3855–3863. doi: 10.1016/j.bmc.2011.04.038. PubMed DOI
Zhang D., Zhang J., Jiang K., Li K., Cong Y., Pu S., Jin Y., Lin J. Preparation, characterisation and antitumour activity of β-, γ- and HP-β-cyclodextrin inclusion complexes with oxalilplatin. Spectroc. Acta Pt. A Molec. Biomolec. Spectr. 2016;152:501–508. doi: 10.1016/j.saa.2015.07.088. PubMed DOI
Vaidya B., Parvathaneni V., Kulkarni N.S., Shukla S.K., Damon J.K., Sarode A., Kanabar D., Garcia J.V., Mitragotri S., Muth A., et al. Cyclodextrin modified loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. Int. J. Biol. Macromol. 2019;122:338–347. doi: 10.1016/j.ijbiomac.2018.10.181. PubMed DOI
Thiabaud G., Harden-Bull L., Ghang Y.-J., Sen S., Chi X., Bachman J.L., Lych V.M., Siddik Z.H., Sessler J.L. Platinum(IV)-Ferrocene Conjugates and Their Cyclodextrin Host–Guest Complexes. Inorg. Chem. 2019;58:7886–7894. doi: 10.1021/acs.inorgchem.9b00570. PubMed DOI PMC
Tian B., Hua S., Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr. Polym. 2020;232:115805. doi: 10.1016/j.carbpol.2019.115805. PubMed DOI
Oumata M., Bettayeb K., Ferandin Y., Demange L., Lopez-Giral A., Goddard M.-L., Myrianthopoulos V., Mikros E., Flajolet M., Greengard P., et al. Roscovitine-derived, dual-specifity inhibitors of cyclin-dependent kinases and casein kinases 1. J. Med. Chem. 2008;51:5229–5242. doi: 10.1021/jm800109e. PubMed DOI
Vícha R., Rouchal M., Kozubková Z., Kuřitka I., Marek R., Branná P., Čmelík R. Novel adamantane-bearing anilines and properties of their supramolecular complexes with β-cyclodextrin. Supramol. Chem. 2011;23:663–677. doi: 10.1080/10610278.2011.593628. DOI
Rouchal M., Matelová A., Pires de Carvalho F., Bernat R., Grbić D., Kuřitka I., Babinský M., Marek R., Čmelík R., Vícha R. Adamantane-bearing benzylamines and benzylamides: Novel building blocks for supramolecular systems with finely tuned binding properties toward β-cyclodextrin. Supramol. Chem. 2013;25:349–361. doi: 10.1080/10610278.2013.783916. DOI
Fioriny M.T., Abell C. Solution-phase synthesis of 2,6,9-trisubstituted purines. Tetrahedron Lett. 1998;39:1827–1830. doi: 10.1016/S0040-4039(98)00098-7. DOI
Berry D.J., DiGiovanna C.V., Metrick S.S., Murugan R. Catalysis by 4-dialkylaminopyridines. Arkivoc. 2001;2:944–964. doi: 10.3998/ark.5550190.0002.114. DOI
Schow S.R., Mackman R.L., Blum C.L., Brooks E., Horsma A.G., Joly A., Kerwar S.S., Lee G., Shiffman D., Nelson M.G., et al. Synthesis and activity of 2,6,9-trisubstituted purines. Bioorg. Med. Chem. Lett. 1997;7:2697–2702. doi: 10.1016/S0960-894X(97)10076-2. DOI
Chang Y.-T., Gray N.S., Rosania G.R., Sutherlin D.P., Kwon S., Norman T.C., Sarohia R., Leost M., Meijer L., Schultz P.G. Synthesis and application of functionally diverse 2,6,9-trisubstituted purines libraries as CDK inhibitors. Chem. Biol. 1999;6:361–375. doi: 10.1016/S1074-5521(99)80048-9. PubMed DOI
Oumata N., Ferandin Y., Meijer L., Galons H. Practical synthesis of roscovitine and CR8. Org. Process Res. Dev. 2009;13:641–644. doi: 10.1021/op800284k. DOI
Hloušková N., Rouchal M., Nečas M., Vícha R. 2,6-Dichloro-7-isopropyl-7H-purine. Acta Crystallogr. Sect. E Struct. Rep. Online. 2012;68:o1585. doi: 10.1107/S160053681201879X. PubMed DOI PMC
Rouchal M., Nečas M., Vícha R. 4-(1-Adamantylmethyl)-N-(2-chloro-9-isopropyl-9H-purin-6-yl)aniline. Acta Crystallogr. Sect. E Struct. Rep. Online. 2009;65:o1676. doi: 10.1107/S1600536809023629. PubMed DOI PMC
Rouchal M., Nečas M., de Carvalho F.P., Vícha R. 2-(1-Adamantyl)-1-{4-[(2-chloro-9-isopropyl-9H-purin-6-yl)aminomethyl]phenyl}ethanol. Acta Crystallogr. Sect. E Struct. Rep. Online. 2009;65:o298–o299. doi: 10.1107/S160053680900052X. PubMed DOI PMC
Popowycz F., Fornet G., Schneider C., Bettayeb K., Ferandin Y., Lamigeon C., Tirado O.M., Mateo-Lozano S., Notario V., Colas P., et al. Pyrazolo[1,5-a]triazine as a purine bioisostere: Access to potent cyclin-dependent kinase inhibitor (R)-roscovitine analogue. J. Med. Chem. 2009;52:655–663. doi: 10.1021/jm801340z. PubMed DOI PMC
Chen P., Lee N.V., Hu W., Xu M., Ferre R.A., Lam H., Bergqist S., Solowiej J., Diehl W., He Z.-A., et al. Spectrum and Degree of CDK Drug Interactions Predicts Clinical Performance. Mol. Cancer Ther. 2016;15:2273–2281. doi: 10.1158/1535-7163.MCT-16-0300. PubMed DOI
Vícha R., Potáček M. Influence of Catalytic System Composition on Formation of Adamantane Containing Ketones. Tetrahedron. 2005;61:83–88. doi: 10.1016/j.tet.2004.10.059. DOI
Halgren T.H. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996;17:490–519. doi: 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P. DOI
De Azevedo W.F., Leclerc S., Meijer L., Havlíček L., Strnad M., Kim S.-H. Inhibition of Cyclin-Dependent Kinases by Purine Analogues. Eur. J. Biochem. 1997;243:518–526. doi: 10.1111/j.1432-1033.1997.0518a.x. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Comp. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Dallakyan S., Olson A.J. Small-Molecule Library Screening by Docking with PyRx. In: Hempel J., Williams C., Hong C., editors. Chemical Biology. Methods in Molecular Biology. Volume 1263. Humana Press; New York, NY, USA: 2015. PubMed DOI
Adasme M.F., Linnemann K.L., Bolz S.N., Kaiser F., Salentin S., Haupt V.J., Schroeder M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucl. Acids Res. 2021;49:W530–W534. doi: 10.1093/nar/gkab294. PubMed DOI PMC