Mitotic chromosome organization: General rules meet species-specific variability

. 2020 ; 18 () : 1311-1319. [epub] 20200203

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32612754
Odkazy

PubMed 32612754
PubMed Central PMC7305364
DOI 10.1016/j.csbj.2020.01.006
PII: S2001-0370(19)30456-8
Knihovny.cz E-zdroje

Research on the formation of mitotic chromosomes from interphase chromatin domains, ongoing for several decades, made significant progress in recent years. It was stimulated by the development of advanced microscopic techniques and implementation of chromatin conformation capture methods that provide new insights into chromosome ultrastructure. This review aims to summarize and compare several models of chromatin fiber folding to form mitotic chromosomes and discusses them in the light of the novel findings. Functional genomics studies in several organisms confirmed condensins and cohesins as the major players in chromosome condensation. Here we compare available data on the role of these proteins across lower and higher eukaryotes and point to differences indicating evolutionary different pathways to shape mitotic chromosomes. Moreover, we discuss a controversial phenomenon of the mitotic chromosome ultrastructure - chromosome cavities - and using our super-resolution microscopy data, we contribute to its elucidation.

Zobrazit více v PubMed

Schubert V. Super-resolution microscopy - applications in plant cell research. Front Plant Sci. 2017;8:531. PubMed PMC

Walther N., Ellenberg J. Chapter 4 - Quantitative live and super-resolution microscopy of mitotic chromosomes. In: Maiato H., Schuh M., editors. Methods in cell biology. Academic Press; 2018. pp. 65–90. PubMed

Baroux C., Schubert V. Technical review: microscopy and image processing tools to analyze plant chromatin: practical considerations. In: Bemer M., Baroux C., editors. Plant chromatin dynamics: methods and protocols. Springer; New York: 2018. pp. 537–589. PubMed

Danev R., Yanagisawa H., Kikkawa M. Cryo-electron microscopy methodology: current aspects and future directions. Trends Biochem Sci. 2019;44:837–848. PubMed

Sati S., Cavalli G. Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma. 2017;126:33–44. PubMed

Lieberman-Aiden E., van Berkum N.L., Williams L., Imakaev M., Ragoczy T., Telling A. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–293. PubMed PMC

Wanner G., Schroeder-Reiter E., Ma W., Houben A., Schubert V. The ultrastructure of mono- and holocentric plant centromeres: an immunological investigation by structured illumination microscopy and scanning electron microscopy. Chromosoma. 2015;124:503–517. PubMed

Schroeder-Reiter E., Perez-Willard F., Zeile U., Wanner G. Focused ion beam (FIB) combined with high resolution scanning electron microscopy: a promising tool for 3D analysis of chromosome architecture. J Struct Biol. 2009;165:97–106. PubMed

Ou H.D., Phan S., Deerinck T.J., Thor A., Ellisman M.H., O'Shea C.C. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science. 2017;357:eaag0025. PubMed PMC

Chen B., Yusuf M., Hashimoto T., Estandarte A.K., Thompson G., Robinson I. Three-dimensional positioning and structure of chromosomes in a human prophase nucleus. Sci Adv. 2017;3:e1602231. PubMed PMC

Cremer T., Cremer M. Chromosome territories. Cold Spring Harb Perspect Biol. 2010;2:a003889. PubMed PMC

Dixon J.R., Selvaraj S., Yue F., Kim A., Li Y., Shen Y. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–380. PubMed PMC

Ramirez F., Bhardwaj V., Arrigoni L., Lam K.C., Gruning B.A., Villaveces J. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat Commun. 2018;9:189. PubMed PMC

Szabo Q., Bantignies F., Cavalli G. Principles of genome folding into topologically associating domains. Sci Adv. 2019;5:eaaw1668. PubMed PMC

Nora E.P., Lajoie B.R., Schulz E.G., Giorgetti L., Okamoto I., Servant N. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature. 2012;485:381–385. PubMed PMC

Dixon Jesse R., Gorkin David U., Ren B. Chromatin domains: the unit of chromosome organization. Mol Cell. 2016;62:668–680. PubMed PMC

Dong P., Tu X., Li H., Zhang J., Grierson D., Li P. Tissue-specific Hi-C analyses of rice, foxtail millet and maize suggest non-canonical function of plant chromatin domains. J Integr Plant Biol. 2019;44 PubMed

Stam M., Tark-Dame M., Fransz P. 3D genome organization: a role for phase separation and loop extrusion? Curr Opin Plant Biol. 2019;48:36–46. PubMed

Sedat J., Manuelidis L. A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):331–350. PubMed

Finch J.T., Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA. 1976;73:1897–1901. PubMed PMC

Woodcock C.L., Frado L.L., Rattner J.B. The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol. 1984;99:42–52. PubMed PMC

Ohnuki Y. Structure of chromosomes. I. Morphological studies of the spiral structure of human somatic chromosomes. Chromosoma. 1968;25:402–428. PubMed

Manton I. The spiral structure of chromosomes. Biol Rev Camb Philos Soc. 1950;25:486–508. PubMed

Rattner J.B., Lin C.C. Radial loops and helical coils coexist in metaphase chromosomes. Cell. 1985;42:291–296. PubMed

Maeshima K., Ide S., Babokhov M. Dynamic chromatin organization without the 30-nm fiber. Curr Opin Cell Biol. 2019;58:95–104. PubMed

Hansen J.C., Connolly M., McDonald C.J., Pan A., Pryamkova A., Ray K. The 10-nm chromatin fiber and its relationship to interphase chromosome organization. Biochem Soc Trans. 2018;46:67–76. PubMed PMC

Grigoryev S.A., Bascom G., Buckwalter J.M., Schubert M.B., Woodcock C.L., Schlick T. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes. Proc Natl Acad Sci USA. 2016;113:1238–1243. PubMed PMC

Dekker J., Rippe K., Dekker M., Kleckner N. Capturing chromosome conformation. Science. 2002;295:1306–1311. PubMed

Davies J.O., Oudelaar A.M., Higgs D.R., Hughes J.R. How best to identify chromosomal interactions: a comparison of approaches. Nat Methods. 2017;14:125–134. PubMed

Naumova N., Imakaev M., Fudenberg G., Zhan Y., Lajoie B.R., Mirny L.A. Organization of the mitotic chromosome. Science. 2013;342:948–953. PubMed PMC

Wanner G., Formanek H. A new chromosome model. J Struct Biol. 2000;132:147–161. PubMed

Wanner G., Schroeder-Reiter E., Formanek H. 3D Analysis of chromosome architecture: advantages and limitations with SEM. Cytogenet Genome Res. 2005;109:70–78. PubMed

Paulson J.R., Laemmli U.K. The structure of histone-depleted metaphase chromosomes. Cell. 1977;12:817–828. PubMed

Laemmli U.K., Cheng S.M., Adolph K.W., Paulson J.R., Brown J.A., Baumbach W.R. Metaphase chromosome structure: the role of nonhistone proteins. Cold Spring Harb Symp Quant Biol. 1978;42:351–360. PubMed

Poonperm R., Takata H., Hamano T., Matsuda A., Uchiyama S., Hiraoka Y. Chromosome scaffold is a double-stranded assembly of scaffold proteins. Sci Rep. 2015;5 Article 11916. PubMed PMC

Sun M.X., Biggs R., Hornick J., Marko J.F. Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold. Chromosome Res. 2018;26:277–295. PubMed PMC

Walther N., Hossain M.J., Politi A.Z., Koch B., Kueblbeck M., Odegard-Fougner O. A quantitative map of human condensins provides new insights into mitotic chromosome architecture. J Cell Biol. 2018;217:2309–2328. PubMed PMC

Poirier M.G., Marko J.F. Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc Natl Acad Sci USA. 2002;99:15393–15397. PubMed PMC

Biggs R., Liu P.Z., Stephens A.D., Marko J.F. Effects of altering histone posttranslational modifications on mitotic chromosome structure and mechanics. Mol Biol Cell. 2019;30:820–827. PubMed PMC

Kimura K., Rybenkov V.V., Crisona N.J., Hirano T., Cozzarelli N.R. 13S Condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell. 1999;98:239–248. PubMed

Ono T., Losada A., Hirano M., Myers M.P., Neuwald A.F., Hirano T. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell. 2003;115:109–121. PubMed

Hirano T. Condensin-based chromosome organization from bacteria to vertebrates. Cell. 2016;164:847–857. PubMed

Piskadlo E., Oliveira R.A. A Topology-centric view on mitotic chromosome architecture. Int J Mol Sci. 2017;18:E2751. PubMed PMC

Maeshima K., Laemmli U.K. A two-step scaffolding model for mitotic chromosome assembly. Dev Cell. 2003;4:467–480. PubMed

Poonperm R., Takata H., Uchiyama S., Fukui K. Interdependency and phosphorylation of KIF4 and condensin I are essential for organization of chromosome scaffold. PLoS One. 2017;12:e0183298. PubMed PMC

Ohta S., Taniguchi T., Sato N., Hamada M., Taniguchi H., Rappsilber J. Quantitative proteomics of the mitotic chromosome scaffold reveals the association of BAZ1B with chromosomal axes. Mol Cell Proteomics. 2019;18:169–181. PubMed PMC

Uhlmann F. SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol. 2016;17:399–412. PubMed

Nasmyth K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet. 2001;35:673–745. PubMed

Alipour E., Marko J.F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 2012;40:11202–11212. PubMed PMC

Goloborodko A., Marko J.F., Mirny L.A. Chromosome compaction by active loop extrusion. Biophys J. 2016;110:2162–2168. PubMed PMC

Ganji M., Shaltiel I.A., Bisht S., Kim E., Kalichava A., Haering C.H. Real-time imaging of DNA loop extrusion by condensin. Science. 2018;360:102–105. PubMed PMC

Ono T., Fang Y., Spector D.L., Hirano T. Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell. 2004;15:3296–3308. PubMed PMC

Green L.C., Kalitsis P., Chang T.M., Cipetic M., Kim J.H., Marshall O. Contrasting roles of condensin I and condensin II in mitotic chromosome formation. J Cell Sci. 2012;125:1591–1604. PubMed PMC

Kakui Y., Uhlmann F. SMC complexes orchestrate the mitotic chromatin interaction landscape. Curr Genet. 2018;4:335–339. PubMed PMC

Takahashi M., Hirota T. Folding the genome into mitotic chromosomes. Curr Opin Cell Biol. 2019;60:19–26. PubMed

Gibcus J.H., Samejima K., Goloborodko A., Samejima I., Naumova N., Nuebler J. A pathway for mitotic chromosome formation. Science. 2018;359:eaao6135. PubMed PMC

Östergen G. Colchicine mitosis, chromosome contraction, narcosis and protein chain folding. Hereditas. 1944;30:429–467.

Moser S.C., Swedlow J.R. How to be a mitotic chromosome. Chromosome Res. 2011;19:307–319. PubMed PMC

Koyani P.R., Saiyad S.S. Study of effect of colchicine exposure on length of chromosome during mitosis. J. Anat. Soc. India. 2011;60:177–180.

Daban J.R. Stacked thin layers of metaphase chromatin explain the geometry of chromosome rearrangements and banding. Sci Rep. 2015;5 Article 14891. PubMed PMC

Gállego I., Castro-Hartmann P., Caravaca J.M., Caño S., Daban J.-R. Dense chromatin plates in metaphase chromosomes. Eur Biophys J. 2009;38:503–522. PubMed

Chicano A., Crosas E., Oton J., Melero R., Engel B.D., Daban J.R. Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure. Embo J. 2019;38:e99769. PubMed PMC

Chicano A., Daban J.R. Chromatin plates in the interphase nucleus. FEBS Lett. 2019;593:810–819. PubMed

Piskadlo E., Tavares A., Oliveira R.A. Metaphase chromosome structure is dynamically maintained by condensin I-directed DNA (de)catenation. Elife. 2017;6 PubMed PMC

Chen C., Lim H.H., Shi J., Tamura S., Maeshima K., Surana U. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo. Mol Biol Cell. 2016;27:3357–3368. PubMed PMC

Gan L., Ladinsky M.S., Jensen G.J. Chromatin in a marine picoeukaryote is a disordered assemblage of nucleosomes. Chromosoma. 2013;122:377–386. PubMed PMC

Cai S., Chen C., Tan Z.Y., Huang Y., Shi J., Gan L. Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo. Proc Natl Acad Sci USA. 2018;115:10977–10982. PubMed PMC

Fuchs J., Loidl J. Behaviour of nucleolus organizing regions (NORs) and nucleoli during mitotic and meiotic divisions in budding yeast. Chromosome Res. 2004;12:427–438. PubMed

Schalbetter S.A., Goloborodko A., Fudenberg G., Belton J.M., Miles C., Yu M. SMC complexes differentially compact mitotic chromosomes according to genomic context. Nat Cell Biol. 2017;19:1071–1080. PubMed PMC

Freeman L., Aragon-Alcaide L., Strunnikov A. The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol. 2000;149:811–824. PubMed PMC

Hirano T. Condensins: universal organizers of chromosomes with diverse functions. Genes Dev. 2012;26:1659–1678. PubMed PMC

Fullwood M.J., Ruan Y. ChIP-based methods for the identification of long-range chromatin interactions. J Cell Biochem. 2009;107:30–39. PubMed PMC

Tanizawa H., Kim K.-D., Iwasaki O., Noma K.-I. Architectural alterations of the fission yeast genome during the cell cycle. Nat Struct Mol Biol. 2017;24:965–976. PubMed PMC

Waizenegger I.C., Hauf S., Meinke A., Peters J.-M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell. 2000;103:399–410. PubMed

Bolaños-Villegas P., De K., Pradillo M., Liu D., Makaroff C.A. In favor of establishment: regulation of chromatid cohesion in plants. Front Plant Sci. 2017;8:846. PubMed PMC

Kakui Y., Rabinowitz A., Barry D.J., Uhlmann F. Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast. Nat Genet. 2017;49:1553–1557. PubMed PMC

Lazar-Stefanita L., Scolari V.F., Mercy G., Muller H., Guerin T.M., Thierry A. Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle. EMBO J. 2017;36:2684–2697. PubMed PMC

Lawrimore J., Doshi A., Friedman B., Yeh E., Bloom K. Geometric partitioning of cohesin and condensin is a consequence of chromatin loops. Mol Biol Cell. 2018;29:2737–2750. PubMed PMC

Nishide K., Hirano T. Overlapping and non-overlapping functions of condensins I and II in neural stem cell divisions. PLoS Genet. 2014;10 PubMed PMC

Oliveira R.A., Heidmann S., Sunkel C.E. Condensin I binds chromatin early in prophase and displays a highly dynamic association with Drosophila mitotic chromosomes. Chromosoma. 2007;116:259–274. PubMed

Herzog S., Nagarkar Jaiswal S., Urban E., Riemer A., Fischer S., Heidmann S.K. Functional dissection of the Drosophila melanogaster condensin subunit Cap-G reveals its exclusive association with condensin I. PLoS Genet. 2013;9:e1003463. PubMed PMC

Fujiwara T., Tanaka K., Kuroiwa T., Hirano T. Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae. Mol Biol Cell. 2013;24:2515–2527. PubMed PMC

King T.D., Leonard C.J., Cooper J.C., Nguyen S., Joyce E.F., Phadnis N. Recurrent losses and rapid evolution of the condensin II complex in insects. Mol Biol Evol. 2019:2195–2204. PubMed PMC

Csankovszki G., Collette K., Spahl K., Carey J., Snyder M., Petty E. Three distinct condensin complexes control C. elegans chromosome dynamics. Curr Biol. 2009;19:9–19. PubMed PMC

Schubert V., Lermontova I., Schubert I. The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility. Chromosoma. 2013;122:517–533. PubMed

Liu C.-M., McElver J., Tzafrir I., Joosen R., Wittich P., Patton D. Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype. Plant J. 2002;29:405–415. PubMed

Tzafrir I., McElver J.A., Liu C.-M., Yang L.J., Wu J.Q., Martinez A. Diversity of TITAN Functions in Arabidopsis seed development. Plant Physiol. 2002;128:38–51. PubMed PMC

Fujimoto S., Yonemura M., Matsunaga S., Nakagawa T., Uchiyama S., Fukui K. Characterization and dynamic analysis of Arabidopsis condensin subunits, AtCAP-H and AtCAP-H2. Planta. 2005;222:293–300. PubMed

Sakamoto T., Inui Y.T., Uraguchi S., Yoshizumi T., Matsunaga S., Mastui M. Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. Plant Cell. 2011;23:3533–3546. PubMed PMC

Sakamoto T., Sugiyama T., Yamashita T., Matsunaga S. Plant condensin II is required for the correct spatial relationship between centromeres and rDNA arrays. Nucleus. 2019;10:116–125. PubMed PMC

Shintomi K., Takahashi T.S., Hirano T. Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat Cell Biol. 2015;17:1014–1023. PubMed

Orlandini E., Marenduzzo D., Michieletto D. Synergy of topoisomerase and structural-maintenance-of-chromosomes proteins creates a universal pathway to simplify genome topology. Proc Natl Acad Sci USA. 2019;116:8149–8154. PubMed PMC

Hao S., Jiao M., Huang B. Chromosome organization revealed upon the decondensation of telophase chromosomes in Allium. Chromosoma. 1990;99:371–378.

Hao S., Xing M., Jiao M. Chromatin-free compartments and their contents in anaphase chromosomes of higher plants. Cell Biol Int Rep. 1988;12:627–635.

Kuznetsova M.A., Chaban I.A., Sheval E.V. Visualization of chromosome condensation in plants with large chromosomes. BMC Plant Biol. 2017;17 Article 153. PubMed PMC

Sparvoli E., Gay H., Kaufmann B.P. Number and pattern of association of chromonemata in chromosomes of Tradescantia. Chromosoma. 1965;16:415–435. PubMed

Hamano T., Dwiranti A., Kaneyoshi K., Fukuda S., Kometani R., Nakao M. Chromosome interior observation by Focused ion beam/Scanning electron microscopy (FIB/SEM) Using ionic liquid technique. Microsc Microanal. 2014;20:1340–1347. PubMed

Weisshart K., Fuchs J., Schubert V. Structured illumination microscopy (SIM) and photoactivated localization microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules on flow-sorted arabidopsis nuclei. Bio-protocol. 2016;6:e1725.

Palozola K.C., Liu H., Nicetto D., Zaret K.S. Low-level, global transcription during mitosis and dynamic gene reactivation during mitotic exit. Cold Spring Harb Symp Quant Biol. 2017;82:197–205. PubMed

Mumbach M.R., Rubin A.J., Flynn R.A., Dai C., Khavari P.A., Greenleaf W.J. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods. 2016;13:919–922. PubMed PMC

Cardozo Gizzi A.M., Cattoni D.I., Fiche J.-B., Espinola S.M., Gurgo J., Messina O. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol Cell. 2019;74:212–222.e5. PubMed

Bintu B., Mateo L.J., Su J.-H., Sinnott-Armstrong N.A., Parker M., Kinrot S. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science. 2018;362:eaau1783. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...