Plant defense under Arctic light conditions: Can plants withstand invading pests?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36507393
PubMed Central
PMC9729949
DOI
10.3389/fpls.2022.1051107
Knihovny.cz E-zdroje
- Klíčová slova
- climate change, jasmonate signaling, light regime, pest distribution, plant defense,
- Publikační typ
- časopisecké články MeSH
Global warming is predicted to change the growth conditions for plants and crops in regions at high latitudes (>60° N), including the Arctic. This will be accompanied by alterations in the composition of natural plant and pest communities, as herbivorous arthropods will invade these regions as well. Interactions between previously non-overlapping species may occur and cause new challenges to herbivore attack. However, plants growing at high latitudes experience less herbivory compared to plants grown at lower latitudes. We hypothesize that this finding is due to a gradient of constitutive chemical defense towards the Northern regions. We further hypothesize that higher level of defensive compounds is mediated by higher level of the defense-related phytohormone jasmonate. Because its biosynthesis is light dependent, Arctic summer day light conditions can promote jasmonate accumulation and, hence, downstream physiological responses. A pilot study with bilberry (Vaccinium myrtillus) plants grown under different light regimes supports the hypothesis.
Botanical Institute Karlsruhe Institute of Technology Karlsruhe Germany
Department of Arctic and Marine Biology The Arctic University of Norway Tromsø Norway
Faculty of Science University of South Bohemia Ceske Budejovice Czechia
Institute of Entomology Biology Centre of Czech Academy of Science Ceske Budejovice Czechia
NIBIO Norwegian Institute of Bioeconomy Research Ås Norway
Research Group Plant Defense Physiology Max Planck Institute for Chemical Ecology Jena Germany
Zobrazit více v PubMed
Agrawal A. A. (2001). Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326. doi: 10.1126/science.1060701 PubMed DOI
Agrawal A. A., Kearney E., Hastings A., Ramsey T. (2012). Attenuation of the jasmonate burst, plant defensive traits, and resistance to specialist monarch caterpillars on shaded common milkweed (Asclepias syriaca). J. Chem. Ecol. 38, 893–890. doi: 10.1007/s10886-012-0145-3 PubMed DOI
Ayres M. P., Scriber J. M. (1994). Local adaptation to regional climates in Papilio canadensis (Lepidoptera: Papilionidae). Ecol. Monogr. 64, 465–482. doi: 10.2307/2937146 DOI
Ballaré C. L. (2014). Light regulation of plant defense. Annu. Rev. Plant Biol. 65, 335–363. doi: 10.1146/annurev-arplant-050213-040145 PubMed DOI
Batalden R. V., Oberhauser K., Peterson A. T. (2014). Ecological niches in sequential generations of eastern north American monarch butterflies (Lepidoptera: Danaidae): The ecology of migration and likely climate change implications. Environ. Entomol. 36, 1365–1373. doi: 10.1603/0046-225X(2007)36[1365:ENISGO]2.0.CO;2 PubMed DOI
Bebber D. P. (2015). Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356. doi: 10.1146/annurev-phyto-080614-120207 PubMed DOI
Bebber D. P., Ramotowski A. A. T., Gurr S. J. (2013). Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988. doi: 10.1038/nclimate1990 DOI
Benevenuto R. F., Seldal T., Hegland S. J., Rodriguez-Saona C., Kawash J., Polashock J. (2019). Transcriptional profiling of methyl jasmonate-induced defense responses in bilberry (Vaccinium myrtillus l.). BMC Plant Biol. 19, 70. doi: 10.1186/s12870-019-1650-0 PubMed DOI PMC
Buras A., Menzel A. (2019). Projecting tree species composition changes of European forests for2062, 061–2090 under RCP 4.5 and RCP 8.5 scenarios. Front. Plant Sci. 9, 1986. doi: 10.3389/fpls.2018.01986 PubMed DOI PMC
Cargnel M. D., Demkura P. V., Ballaré C. L. (2014). Linking phytochrome to plant immunity: low red:far-red ratios increase arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin. New Phytol. 204, 342–354. doi: 10.1111/nph.13032 PubMed DOI
Chaloner T. M., Gurr S. J., Bebber D. P. (2021). Plant pathogen imnfection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715. doi: 10.1038/s41558-021-01104-8 DOI
Chen I.-C., Huang I.-C., Liu M.-J., Wang Z.-G., Chung S.-S., Hsieh H.-L. (2007). Glutathione s-transferase interacting with far-red insensitive 219 is involved in phytochrome a-mediated signaling in arabidopsis. Plant Physiol. 143, 1189–1202. doi: 10.1104/pp.106.094185 PubMed DOI PMC
Chini A., Fonseca S., Fernández G., Adie B., Chico J. M., Lorenzo O., et al. . (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671. doi: 10.1038/nature06006 PubMed DOI
Chini A., Monte I., Zamarreño A. M., Hamberg M., Lassueur S., Reymond P., et al. . (2018). An OPR3-independent pathway uses 4, 5-didehydrojasmonate for jasmonate synthesis. Nat. Chem. Biol. 14, 171. doi: 10.1038/nchembio.2540 PubMed DOI
Chong J., Poutaraud A., Hugueney P. (2009). Metabolism and roles of stilbenes in plants. Plant Sci. 177, 143–155. doi: 10.1016/j.plantsci.2009.05.012 DOI
Coley P. D., Bryant J. P., Chapin F. S., 3rd (1985). Resource availability and plant antiherbivore defense. Science 20, 895–898. doi: 10.1126/science.230.4728.895 PubMed DOI
Cushman J. C., Denby K., Mittler R. (2022). Plant responses and adaptations to a chaging climate. Plant J. 109, 319–322. doi: 10.1111/tpj.15641 PubMed DOI
Dávila-Lara A., Rahman-Soad A., Reichelt M., Mithöfer A. (2021). Carnivorous Nepenthes x ventrata plants use a naphthoquinone as phytoanticipin against herbivory. PloS One 16, e0258235. doi: 10.1371/journal.pone.0258235 PubMed DOI PMC
De Frenne P., Graae B. J., Brunet J., Shevtsova A., De Schrijver A., Chabrerie O., et al. . (2012). The response of forest plant regeneration to temperature variation along a latitudinal gradient. Ann. Bot. 108, 1037–1046. doi: 10.1093/aob/mcs015 PubMed DOI PMC
Delgado-Baquerizo M., Guerra C. A., Cano-Diaz C., Egidi E., Wang J.-T., Eisenhauer N., et al. . (2020). The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554. doi: 10.1038/s41558-020-0759-3 DOI
Deutsch C. A., Tewksbury J. J., Tigchelaar M., Battisti D. S., Merrill S. C., Huey R. B., et al. . (2018). Incease in crop losses to insect pets on a warming climate. Science 361, 916–919. doi: 10.1126/science.aat3466 PubMed DOI
Devoto A., Nieto-Rostro M., Xie D., Ellis C., Harmston R., Patrick E., et al. . (2002). COI1 links jasmonate signalling and fertility to the SCF ubiquitin–ligase complex in arabidopsis. Plant J. 32, 457–466. doi: 10.1046/j.1365-313X.2002.01432.x PubMed DOI
Fernandez-Calvo P., Chini A., Fernandez-Barbero G., Chico J. M., Gimenez-Ibanez S., Geerinck J., et al. . (2011). The arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23, 701–715. doi: 10.1105/tpc.110.080788 PubMed DOI PMC
Fernández-Milmanda G. L., Ballaré C. L. (2021). Shade avoidance: Expanding the color and hormone palette. Trends Plant Sci. 26, 509–523. doi: 10.1016/j.tplants.2020.12.006 PubMed DOI
Fonseca S., Chini A., Hamberg M., Adie B., Porzel A., Kramell R., et al. . (2009). (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5, 344–350. doi: 10.1038/nchembio.161 PubMed DOI
Fu X., Peng B., Hassani D., Xie L., Liu H., Li Y., et al. . (2021). AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua . New Phytol. 231, 1858–1874. doi: 10.1111/nph.17453 PubMed DOI
Glazebrook J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227. doi: 10.1146/annurev.phyto.43.040204.135923 PubMed DOI
Gutierrez-Larruscain D., Krüger M., Abeyawardana O. A. J., Belz C., Dobrev P. I., Vaňková R., et al. . (2022). The high concentrations of abscisic, jasmonic, and salicylic acids produced under long days do not accelerate flowering in chenopodium ficifolium 459. Plant Sci. 320, 111279. doi: 10.1016/j.plantsci.2022.111279 PubMed DOI
Haga K., Iino M. (2004). Phytochrome-mediated transcriptional up-regulation of ALLENE OXIDE SYNTHASE in rice seedlings. Plant Cell Physiol. 45, 119–128. doi: 10.1093/pcp/pch025 PubMed DOI
Harvell C. D., Mitchell C. E., Ward J. R., Altizer S., Dobson A. P., Ostfeld R. S., et al. . (2002). Climate warming and dosease risks for terrestrial and marine biota. Science 296, 2158–2162. doi: 10.1126/science.1063699 PubMed DOI
Hellmann J. J., Pelini S. L., Prior K. M., Dzurisin J. D. (2008). The response of two butterfly species to climatic variation at the edge of their range and the implications for poleward range shifts. Oecologia 157, 583–592. doi: 10.1007/s00442-008-1112-0 PubMed DOI
He G., Tarui Y., Iino M. (2005). A novel receptor kinase involved in jasmonate-mediated wound and phytochrome signaling in maize coleoptiles. Plant Cell Physiol. 46, 870–883. doi: 10.1093/pcp/pci092 PubMed DOI
Howe G. A., Jander G. (2008). Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59, 41–66. doi: 10.1146/annurev.arplant.59.032607.092825 PubMed DOI
Hsieh H. L., Okamoto H., Wang M., Ang L. H., Matsui M., Goodman H., et al. . (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome a and the downstream regulator COP1 in light control of arabidopsis development. Genes Dev. 4, 1958–1970. doi: 10.1101/gad.14.15.1958 PubMed DOI PMC
IPCC (2019). Special report on the ocean and cryosphere in a changing climate (SROCC). Eds. Pfortner H.-O., Roberts D. C., Masson-Delmotte V., Zhai P., Tignor M., Poloczanska E., et al. (Geneva, Switzerland: IPCC; ).
IPCC (2021). Climate Change2022, 021: The physical science basis. Eds. Masson-Delmotte V., Zhai P., Pirani A., Connors S. L., Pean C., Berger C., et al. (Cambridge, UK: Cambridge University Press; ).
Izaguirre M. M., Mazza C. A., Biondini M., Baldwin I. T., Ballaré C. L. (2006). Remote sensing of future competitors: impacts on plant defenses. Proc. Natl. Acad. Sci. U.S.A. 103, 7170–7174. doi: 10.1073/pnas.0509805103 PubMed DOI PMC
Jaakola L., Määttä-Riihinen K., Kärenlampi S., Hohtola A. (2004). Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus l.) leaves. Planta 218, 721–7228. doi: 10.1007/s00425-003-1161-x PubMed DOI
Kazan K., Manners J. M. (2011). The interplay between light and jasmonate signalling during defence and development. J. Exp. Bot. 62, 4087–4100. doi: 10.1093/jxb/err142 PubMed DOI
Koo A. J., Gao X., Jones A. D., Howe G. A. (2009). A rapid wound signal activates the systemic synthesis of bioactive jasmonates in arabidopsis. Plant J. 59, 974–986. doi: 10.1111/j.1365-313X.2009.03924.x PubMed DOI
Leone M., Keller M. M., Cerrudo I., Ballaré C. L. (2014). To grow or defend? low red : far-red ratios reduce jasmonate sensitivity in arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability. New Phytol. 204, 355–367. doi: 10.1111/nph.12971 PubMed DOI
Leskien S. (2020). Hintergrundanalyse: Das wirtschaftspotential der arktis im Überblick (Alfred-Wegener-Institut für Polar- und Meeresforschung, Potsdam, Germany: German Arctic Office; ).
Mølmann J. A. B., Dalmannsdottir S., Hykkerud A. L., Hytönen T., Samkumar A., Jaakola J. (2021). Influence of Arctic light conditions on crop production and quality. Physiol. Plant 172, 1931–1940. doi: 10.1111/ppl.13418 PubMed DOI
Maron J. L., Agrawal A. A., Schemske D. W. (2019). Plant–herbivore coevolution and plant speciation. Ecology 100, e02704. doi: 10.1002/ecy.2704 PubMed DOI
Martz F., Jaakola L., Julkunen-Tiitto R., Stark S. (2010). Phenolic composition and antioxidant capacity of bilberry (Vaccinium myrtillus) leaves in northern Europe following foliar development and along environmental gradients. J. Chem. Ecol. 36, 1017–1028. doi: 10.1007/s10886-010-9836-9 PubMed DOI
Mithöfer A., Boland W. (2012). Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 63, 431–450. doi: 10.1146/annurev-arplant-042110-103854 PubMed DOI
Moreno J. E., Tao Y., Chory J., Ballaré C. L. (2009). Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc. Natl. Acad. Sci. U.S.A. 106, 4935–4940. doi: 10.1073/pnas.0900701106 PubMed DOI PMC
Nguyen T. H., Mai H. T. T., Moukouanga D., Lebrun M., Bellafiore S., Champion A. (2020). “CRISPR/Cas9-mediated gene editing of the jasmonate biosynthesis OsAOC gene in rice,” in Jasmonate in plant biology: Methods and protocols. Eds. Champion A., Laplaze L. (New York, NY: Springer US; ), 199–209. PubMed
Ortigosa A., Fonseca S., Franco-Zorrilla J. M., Fernández-Calvo P., Zander M., Lewsey M. G., et al. . (2020). The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. Plant J. 102, 138–152. doi: 10.1111/tpj.14618 PubMed DOI
Rasmann S., Pellissier L., Defossez E., Jactel H., Kunstler G. (2014). Climate-driven change in plant–insect interactions along elevation gradients. Funct. Ecol. 28, 46–54. doi: 10.1111/1365-2435.12135 DOI
Riemann M., Bouyer D., Hisada A., Müller A., Yatou O., Weiler E. W., et al. . (2009). Phytochrome a requires jasmonate for photodestruction. Planta 229, 1035–1045. doi: 10.1007/s00425-009-0891-9 PubMed DOI
Riemann M., Haga K., Shimizu T., Okada K., Ando S., Mochizuki S., et al. . (2013). Identification of rice allene oxide cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae . Plant J. 74, 226–238. doi: 10.1111/tpj.12115 PubMed DOI
Riemann M., Müller A., Korte A., Furuya M., Weiler E. W., Nick P. (2003). Impaired induction of the jasmonate pathway in the rice mutant hebiba. Plant Physiol. 133, 1820–1830. doi: 10.1104/pp.103.027490 PubMed DOI PMC
Riemann M., Riemann M., Takano M. (2008). Rice JASMONATE RESISTANT 1 is involved in phytochrome and jasmonate signalling. Plant. Cell Environ. 31, 783–792. doi: 10.1111/j.1365-3040.2008.01790.x PubMed DOI
Roberts M. R., Paul N. D. (2006). Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. New Phytol. 170, 677–699. doi: 10.1111/j.1469-8137.2006.01707.x PubMed DOI
Robson F., Okamoto H., Patrick E., Harris S.-R., Wasternack C., Brearley C., et al. . (2010). Jasmonate and phytochrome a signaling in arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22, 1143–1160. doi: 10.1105/tpc.109.067728 PubMed DOI PMC
Salazar D., Marquis R. J. (2012). Herbivore pressure increases toward the equator. Proc. Natl. Acad. Sci. U.S.A. 109, 12616–12620. doi: 10.1073/pnas.1202907109 PubMed DOI PMC
Savchenko T. V., Rolletschek H., Dehesh K. (2019). Jasmonates-mediated rewiring of central metabolism regulates adaptive responses. Plant Cell Physiol. 60, 2613–2620. doi: 10.1093/pcp/pcz181 PubMed DOI PMC
Schrijvers-Gonlag M., Skarpe C., Andreassen H. P. (2020). Influence of light availabilit and soil productivity on insect herbivory on bilberry (Vaccinium myrtillus l.) leaves following mammalian herbivory. PloS One 15, e0230509. doi: 10.1371/journal.pone.0230509 PubMed DOI PMC
Sheard L. B., Tan X., Mao H., Withers J., Ben-Nissan G., Hinds T. R., et al. . (2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–405. doi: 10.1038/nature09430 PubMed DOI PMC
Staswick P. E., Tiryaki I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in arabidopsis. Plant Cell 16, 2117–2127. doi: 10.1105/tpc.104.023549 PubMed DOI PMC
Staswick P. E., Tiryaki I., Rowe M. L. (2002). Jasmonate response locus JAR1 and several related arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405–1415. doi: 10.1105/tpc.000885 PubMed DOI PMC
Sun Y., Züst T., Silvestro D., Erb. M., Bossdorf O., Matteo P., et al. . (2022). Climate warming can reduce biocontrol efficacy and promote plant invasion due to both genetic and transient metabolomic changes. Ecol. Lett. 25, 1387–1400. doi: 10.1111/ele.14000 PubMed DOI PMC
Svyatyna K., Jikumaru Y., Brendel R., Reichelt M., Mithöfer A., Takano M., et al. . (2014). Light induces jasmonate-isoleucine conjugation via OsJAR1-dependent and -independent pathways in rice. Plant. Cell Environ. 37, 827–839. doi: 10.1111/pce.12201 PubMed DOI
Svyatyna K., Riemann M. (2012). Light-dependent regulation of the jasmonate pathway. Protoplasma 249, 137–145. doi: 10.1007/s00709-012-0409-3 PubMed DOI
Tassoni A., Durante L., Ferri M. (2012). Combined elicitation of methyl-jasmonate and red light on stilbene and anthocyanin biosynthesis. J. Plant Physiol. 169, 775–781. doi: 10.1016/j.jplph.2012.01.017 PubMed DOI
Ueda M., Kaji T., Kozaki W. (2020). Recent advances in plant chemical biology of jasmonates. Int. J. Mol. Sci. 21, 1124. doi: 10.3390/ijms21031124 PubMed DOI PMC
Urban D. L., Harmon M. E., Halpern C. P. (1993). Potential response of pacific northwestern forests to climate change, effects of stand age and initial composition. Clim. Change 23, 247–266. doi: 10.1007/BF01091618 DOI
Vindstad O. P. L., Jepsen J. U., Molvig H., Ims R. A. (2022). A pioneering pest: the winter moth (Operophtera brumata) is expanding its outbreak range into low Arctic shrub tundra. Arctic. Sci. 8, 450–470. doi: 10.1139/as-2021-0027 DOI
Wasternack C., Song S. (2017). Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 68, 1303–1321. doi: 10.1093/jxb/erw443 PubMed DOI
Woods E. C., Hasting A. P., Turley N. E., Heard S. B., Agrawal A. A. (2012). Adaptve geographical clines in the growth and defense of a native plant. Ecol. Monogr. 82, 149–168. doi: 10.1890/11-1446.1 DOI
Wookey P. A., Aerts R., Bardgett R. D., Baptist F., Bråthen K. A., Cornelissen J. H. C., et al. . (2009). Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob. Change Biol. 15, 1153–1172. doi: 10.1111/j.1365-2486.2008.01801.x DOI
Yang Y., Wang S., Leng P., Wu J., Hu Z. (2022). Calcium and jasmonate signals mediate biosynthesis of the floral fragrance regulated by light quality in snapdragon. Plant Growth Regul. 97, 91–100. doi: 10.1007/s10725-022-00807-y DOI
Yang D.-L., Yao J., Mei C.-S., Tong X.-H., Zeng L.-J., Li Q., et al. . (2012). PNAS plus: Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. U.S.A. 109, E1192–E1200. doi: 10.1073/pnas.1201616109 PubMed DOI PMC
Yi R., Yan J., Xie D. (2020). Light promotes jasmonate biosynthesis to regulate photomorphogenesis in arabidopsis. Sci. China Life Sci. 63, 943–952. doi: 10.1007/s11427-019-1584-4 PubMed DOI
Zheng Y., Cui X., Su L., Fang S., Chu J., Gong Q., et al. . (2017). Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated arabidopsis seedlings. Plant J. 90, 1144–1155. doi: 10.1111/tpj.13539 PubMed DOI
Zytynska S. E., Eicher M., Rothballer M., Weisser W. W. (2020). Microbial-mediated plant growth promotion and pest suppression varies under climate change. Front. Plant Sci. 11, 573578. doi: 10.3389/fpls.2020.573578 PubMed DOI PMC