Collagen as a Biomaterial for Skin and Corneal Wound Healing
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
RVO:61989592 and IGA_LF_2022_025
Palacký University in Olomouc
PubMed
36412890
PubMed Central
PMC9680244
DOI
10.3390/jfb13040249
PII: jfb13040249
Knihovny.cz E-resources
- Keywords
- biomaterials, collagen, extracellular matrix, wound healing,
- Publication type
- Journal Article MeSH
- Review MeSH
The cornea and the skin are two organs that form the outer barrier of the human body. When either is injured (e.g., from surgery, physical trauma, or chemical burns), wound healing is initiated to restore integrity. Many cells are activated during wound healing. In particular, fibroblasts that are stimulated often transition into repair fibroblasts or myofibroblasts that synthesize extracellular matrix (ECM) components into the wound area. Control of wound ECM deposition is critical, as a disorganized ECM can block restoration of function. One of the most abundant structural proteins in the mammalian ECM is collagen. Collagen type I is the main component in connective tissues. It can be readily obtained and purified, and short analogs have also been developed for tissue engineering applications, including modulating the wound healing response. This review discusses the effect of several current collagen implants on the stimulation of corneal and skin wound healing. These range from collagen sponges and hydrogels to films and membranes.
Department of Ophthalmology Université de Montréal Montréal QC H3C 3J7 Canada
Maisonneuve Rosemont Hospital Research Centre Montréal QC H1T 2M4 Canada
See more in PubMed
Parenteau-Bareil R., Gauvin R., Berthod F. Collagen-Based Biomaterials for Tissue Engineering Applications. Materials. 2010;3:1863–1887. doi: 10.3390/ma3031863. DOI
Son Y.J., Tse J.W., Zhou Y., Mao W., Yim E.K.F., Yoo H.S. Biomaterials and controlled release strategy for epithelial wound healing. Biomater. Sci. 2019;7:4444–4471. doi: 10.1039/C9BM00456D. PubMed DOI
Netto M.V., Mohan R.R., Ambrósio R., Hutcheon A.E.K., Zieske J., Wilson S. Wound Healing in the Cornea. Cornea. 2005;24:509–522. doi: 10.1097/01.ico.0000151544.23360.17. PubMed DOI
Bukowiecki A., Hos D., Cursiefen C., Eming S.A. Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities. Int. J. Mol. Sci. 2017;18:1257. doi: 10.3390/ijms18061257. PubMed DOI PMC
Li Y., Jeong J., Song W. Molecular Characteristics and Distribution of Adult Human Corneal Immune Cell Types. Front. Immunol. 2022;13:798346. doi: 10.3389/fimmu.2022.798346. PubMed DOI PMC
Nour S., Baheiraei N., Imani R., Khodaei M., Alizadeh A., Rabiee N., Moazzeni S.M. A review of accelerated wound healing approaches: Biomaterial- assisted tissue remodeling. J. Mater. Sci. Mater. Med. 2019;30:120. doi: 10.1007/s10856-019-6319-6. PubMed DOI
Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J. Cell Sci. 2010;123:4195–4200. doi: 10.1242/jcs.023820. PubMed DOI PMC
Ricard-Blum S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2011;3:a004978. doi: 10.1101/cshperspect.a004978. PubMed DOI PMC
Shoulders M.D., Raines R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC
Kananavičiūtė R., Kvederavičiūtė K., Dabkevičienė D., Mackevičius G., Kuisienė N. Collagen-like sequences encoded by extremophilic and extremotolerant bacteria. Genomics. 2019;112:2271–2281. doi: 10.1016/j.ygeno.2019.12.023. PubMed DOI
Yamauchi M., Taga Y., Hattori S., Shiiba M., Terajima M. Analysis of Collagen and Elastin Cross-Links. Vol. 143. Academic Press; Cambridge, MA, USA: 2018. Methods in Cell Biology; pp. 115–132. PubMed DOI
Costa A., Naranjo J.D., Londono R., Badylak S.F. Biologic Scaffolds. Cold Spring Harb. Perspect. Med. 2017;7:a025676. doi: 10.1101/cshperspect.a025676. PubMed DOI PMC
Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed. Eng. Online. 2019;18:1–74. doi: 10.1186/s12938-019-0647-0. PubMed DOI PMC
Ramshaw J.A.M. Biomedical applications of collagens. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015;104:665–675. doi: 10.1002/jbm.b.33541. PubMed DOI
Ramshaw J.A.M., Werkmeister J.A., Dumsday G.J. Bioengineered collagens. Bioengineered. 2014;5:227–233. doi: 10.4161/bioe.28791. PubMed DOI PMC
Yu X., Tang C., Xiong S., Yuan Q., Gu Z.P., Li Z., Hu Y. Modification of Collagen for Biomedical Applications: A Review of Physical and Chemical Methods. Curr. Org. Chem. 2016;20:1797–1812. doi: 10.2174/1385272820666151102213025. DOI
Bonnans C., Chou J., Werb Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014;15:786–801. doi: 10.1038/nrm3904. PubMed DOI PMC
Theocharis A.D., Manou D., Karamanos N.K. The extracellular matrix as a multitasking player in disease. FEBS J. 2019;286:2830–2869. doi: 10.1111/febs.14818. PubMed DOI
Manou D., Caon I., Bouris P., Triantaphyllidou I.-E., Giaroni C., Passi A., Karamanos N.K., Vigetti D., Theocharis A.D. The Complex Interplay between Extracellular Matrix and Cells in Tissues. Vol. 1952. Springer Nature; Berlin, Germany: 2019. p. 485. PubMed DOI
Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001. PubMed DOI
Karamanos N.K. Extracellular matrix: Key structural and functional meshwork in health and disease. FEBS J. 2019;286:2826–2829. doi: 10.1111/febs.14992. PubMed DOI
Vindin H., Mithieux S.M., Weiss A.S. Elastin architecture. Matrix Biol. 2019;84:4–16. doi: 10.1016/j.matbio.2019.07.005. PubMed DOI
Kular J.K., Basu S., Sharma R.I. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng. 2014;5:2041731414557112. doi: 10.1177/2041731414557112. PubMed DOI PMC
Parisi L., Toffoli A., Ghezzi B., Mozzoni B., Lumetti S., Macaluso G.M. A glance on the role of fibronectin in controlling cell response at biomaterial interface. Jpn. Dent. Sci. Rev. 2019;56:50–55. doi: 10.1016/j.jdsr.2019.11.002. PubMed DOI PMC
Sabatier L., Chen D., Fagotto-Kaufmann C., Hubmacher D., McKee M.D., Annis D.S., Mosher D.F., Reinhardt D.P. Fibrillin Assembly Requires Fibronectin. Mol. Biol. Cell. 2009;20:846–858. doi: 10.1091/mbc.e08-08-0830. PubMed DOI PMC
Köwitsch A., Zhou G., Groth T. Medical application of glycosaminoglycans: A review. J. Tissue Eng. Regen. Med. 2017;12:e23–e41. doi: 10.1002/term.2398. PubMed DOI
Kechagia J.Z., Ivaska J., Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 2019;20:457–473. doi: 10.1038/s41580-019-0134-2. PubMed DOI
Harburger D.S., Calderwood D.A. Integrin signalling at a glance. J. Cell Sci. 2009;122:159–163. doi: 10.1242/jcs.018093. PubMed DOI PMC
Pankov R., Yamada K.M. Fibronectin at a glance. J. Cell Sci. 2002;115:3861–3863. doi: 10.1242/jcs.00059. PubMed DOI
Rousselle P., Montmasson M., Garnier C. Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol. 2018;75–76:12–26. doi: 10.1016/j.matbio.2018.01.002. PubMed DOI
Dhavalikar P., Robinson A., Lan Z., Jenkins D., Chwatko M., Salhadar K., Jose A., Kar R., Shoga E., Kannapiran A., et al. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv. Health Mater. 2020;9:2000795. doi: 10.1002/adhm.202000795. PubMed DOI PMC
Mezu-Ndubuisi O.J., Maheshwari A. The role of integrins in inflammation and angiogenesis. Pediatr. Res. 2020;89:1619–1626. doi: 10.1038/s41390-020-01177-9. PubMed DOI PMC
Zeltz C., Gullberg D. The integrin–collagen connection–a glue for tissue repair? J. Cell Sci. 2016;129:653–664. doi: 10.1242/jcs.188672. PubMed DOI
Adamiak K., Sionkowska A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol. 2020;161:550–560. doi: 10.1016/j.ijbiomac.2020.06.075. PubMed DOI
Heino J. The collagen family members as cell adhesion proteins. BioEssays. 2007;29:1001–1010. doi: 10.1002/bies.20636. PubMed DOI
Lorenzo-Martín E., Gallego-Muñoz P., Mar S., Fernández I., Cidad P., Martínez-García M.C. Dynamic changes of the extracellular matrix during corneal wound healing. Exp. Eye Res. 2019;186:107704. doi: 10.1016/j.exer.2019.107704. PubMed DOI
Torricelli A.A.M., Singh V., Santhiago M.R., Wilson S.E. The Corneal Epithelial Basement Membrane: Structure, Function, and Disease. Investig. Opthalmol. Vis. Sci. 2013;54:6390–6400. doi: 10.1167/iovs.13-12547. PubMed DOI PMC
Coupry I., Sibon I., Mortemousque B., Rouanet F., Miné M., Goizet C. Ophthalmological Features Associated With COL4A1 Mutations. Arch. Ophthalmol. 2010;128:483–489. doi: 10.1001/archophthalmol.2010.42. PubMed DOI
Wiegand C., Schönfelder U., Abel M., Ruth P., Kaatz M., Hipler U.-C. Protease and pro-inflammatory cytokine concentrations are elevated in chronic compared to acute wounds and can be modulated by collagen type I in vitro. Arch. Dermatol. Res. 2009;302:419–428. doi: 10.1007/s00403-009-1011-1. PubMed DOI
Metzmacher I., Ruth P., Abel M., Friess W. In vitro binding of matrix metalloproteinase-2 (MMP-2), MMP-9, and bacterial collagenase on collagenous wound dressings. Wound Repair Regen. 2007;15:549–555. doi: 10.1111/j.1524-475X.2007.00263.x. PubMed DOI
Schönfelder U., Abel M., Wiegand C., Klemm D., Elsner P., Hipler U.-C. Influence of selected wound dressings on PMN elastase in chronic wound fluid and their antioxidative potential in vitro. Biomaterials. 2005;26:6664–6673. doi: 10.1016/j.biomaterials.2005.04.030. PubMed DOI
Ryšavá A., Čížková K., Franková J., Roubalová L., Ulrichová J., Vostálová J., Vrba J., Zálešák B., Svobodová A.R. Effect of UVA radiation on the Nrf2 signalling pathway in human skin cells. J. Photochem. Photobiol. B Biol. 2020;209:111948. doi: 10.1016/j.jphotobiol.2020.111948. PubMed DOI
Wang P.-H., Huang B.-S., Horng H.-C., Yeh C.-C., Chen Y.-J. Wound healing. J. Chin. Med Assoc. 2018;81:94–101. doi: 10.1016/j.jcma.2017.11.002. PubMed DOI
Sarveswaran K., Kurz V., Dong Z., Tanaka T., Penny S., Timp G. Synthetic Capillaries to Control Microscopic Blood Flow. Sci. Rep. 2016;6:21885. doi: 10.1038/srep21885. PubMed DOI PMC
Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular Biology of the Cell. 4th ed. Garland Science; New York, NY, USA: 2002.
Mosier D. Pathologic Basis of Veterinary Disease. 6th ed. Elsevier; Amsterdam, The Netherlands: 2017. Chapter 2-Vascular Disorders and Thrombosis1; pp. 44–72.e1.
Golebiewska E.M., Poole A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015;29:153–162. doi: 10.1016/j.blre.2014.10.003. PubMed DOI PMC
Farndale R.W., Sixma J.J., Barnes M.J., De Groot P.G. The role of collagen in thrombosis and hemostasis. J. Thromb. Haemost. 2004;2:561–573. doi: 10.1111/j.1538-7836.2004.00665.x. PubMed DOI
Schultz G.S., Davidson J.M., Kirsner R.S., Bornstein P., Herman I.M. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen. 2011;19:134–148. doi: 10.1111/j.1524-475X.2011.00673.x. PubMed DOI PMC
Eming S.A., Martin P., Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014;6:265sr6. doi: 10.1126/scitranslmed.3009337. PubMed DOI PMC
DiPietro L.A. Angiogenesis and wound repair: When enough is enough. J. Leukoc. Biol. 2016;100:979–984. doi: 10.1189/jlb.4MR0316-102R. PubMed DOI PMC
Demling R. Nutrition, anabolism, and the wound healing process: An overview. Eplasty. 2009;9:e9. PubMed PMC
Roh J.S., Sohn D.H. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018;18:e27. doi: 10.4110/in.2018.18.e27. PubMed DOI PMC
Tanaka T., Narazaki M., Kishimoto T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014;6:a016295. doi: 10.1101/cshperspect.a016295. PubMed DOI PMC
Ridiandries A., Tan J.T.M., Bursill C.A. The Role of Chemokines in Wound Healing. Int. J. Mol. Sci. 2018;19:3217. doi: 10.3390/ijms19103217. PubMed DOI PMC
Revilla G., Darwin E., Rantam F. Effect of Allogeneic Bone Marrow-mesenchymal Stem Cells (BM-MSCs) to Accelerate Burn Healing of Rat on the Expression of Collagen Type I and Integrin α2β1. Pak. J. Biol. Sci. 2016;19:345–351. doi: 10.3923/pjbs.2016.345.351. PubMed DOI
Zhao R., Liang H., Clarke E., Jackson C., Xue M. Inflammation in Chronic Wounds. Int. J. Mol. Sci. 2016;17:2085. doi: 10.3390/ijms17122085. PubMed DOI PMC
Twardowski T., Fertala A., Orgel J., Antonio J.S. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers. Curr. Pharm. Des. 2007;13:3608–3621. doi: 10.2174/138161207782794176. PubMed DOI
Frangogiannis N.G. Fibroblast—Extracellular Matrix Interactions in Tissue Fibrosis. Curr. Pathobiol. Rep. 2016;4:11–18. doi: 10.1007/s40139-016-0099-1. PubMed DOI PMC
Ramasastry S.S. Acute Wounds. Clin. Plast. Surg. 2005;32:195–208. doi: 10.1016/j.cps.2004.12.001. PubMed DOI
Cabral-Pacheco G.A., Garza-Veloz I., La Rosa C.C.-D., Ramirez-Acuña J.M., Perez-Romero B.A., Guerrero-Rodriguez J.F., Martinez-Avila N., Martinez-Fierro M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020;21:9739. doi: 10.3390/ijms21249739. PubMed DOI PMC
Pastar I., Stojadinovic O., Yin N.C., Ramirez H., Nusbaum A.G., Sawaya A., Patel S.B., Khalid L., Isseroff R.R., Tomic-Canic M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care. 2014;3:445–464. doi: 10.1089/wound.2013.0473. PubMed DOI PMC
Reinke J., Sorg H. Wound Repair and Regeneration. Eur. Surg. Res. 2012;49:35–43. doi: 10.1159/000339613. PubMed DOI
Velnar T., Bailey T., Smrkolj V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009;37:1528–1542. doi: 10.1177/147323000903700531. PubMed DOI
Ljubimov A.V., Saghizadeh M. Progress in corneal wound healing. Prog. Retin. Eye Res. 2015;49:17–45. doi: 10.1016/j.preteyeres.2015.07.002. PubMed DOI PMC
Guerrero-Moreno A., Baudouin C., Parsadaniantz S.M., Goazigo A.R.-L. Morphological and Functional Changes of Corneal Nerves and Their Contribution to Peripheral and Central Sensory Abnormalities. Front. Cell. Neurosci. 2020;14:610342. doi: 10.3389/fncel.2020.610342. PubMed DOI PMC
Sridhar M.S. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 2018;66:190–194. doi: 10.4103/ijo.IJO_646_17. PubMed DOI PMC
Kamil S., Mohan R.R. Corneal stromal wound healing: Major regulators and therapeutic targets. Ocul. Surf. 2021;19:290–306. doi: 10.1016/j.jtos.2020.10.006. PubMed DOI PMC
Azimzade Y., Hong J., Mashaghi A. Immunophysical analysis of corneal neovascularization: Mechanistic insights and implications for pharmacotherapy. Sci. Rep. 2017;7:12220. doi: 10.1038/s41598-017-12533-x. PubMed DOI PMC
Clahsen T., Büttner C., Hatami N., Reis A., Cursiefen C. Role of Endogenous Regulators of Hem- And Lymphangiogenesis in Corneal Transplantation. J. Clin. Med. 2020;9:479. doi: 10.3390/jcm9020479. PubMed DOI PMC
Di Zazzo A., Gaudenzi D., Yin J., Coassin M., Fernandes M., Dana R., Bonini S. Corneal angiogenic privilege and its failure. Exp. Eye Res. 2021;204:108457. doi: 10.1016/j.exer.2021.108457. PubMed DOI PMC
Adams J.C., Lawler J. The Thrombospondins. Cold Spring Harb. Perspect. Biol. 2011;3:a009712. doi: 10.1101/cshperspect.a009712. PubMed DOI PMC
Dawson D.W., Volpert O.V., Gillis P., Crawford S.E., Xu H.-J., Benedict W., Bouck N.P. Pigment Epithelium-Derived Factor: A Potent Inhibitor of Angiogenesis. Science. 1999;285:245–248. doi: 10.1126/science.285.5425.245. PubMed DOI
Mukwaya A., Jensen L., Lagali N. Relapse of pathological angiogenesis: Functional role of the basement membrane and potential treatment strategies. Exp. Mol. Med. 2021;53:189–201. doi: 10.1038/s12276-021-00566-2. PubMed DOI PMC
Ellenberg D., Azar D.T., Hallak J.A., Tobaigy F., Han K.Y., Jain S., Zhou Z., Chang J.-H. Novel aspects of corneal angiogenic and lymphangiogenic privilege. Prog. Retin. Eye Res. 2010;29:208–248. doi: 10.1016/j.preteyeres.2010.01.002. PubMed DOI PMC
Chang J.-H., Huang Y.-H., Cunningham C.M., Han K.-Y., Chang M., Seiki M., Zhou Z., Azar D.T. Matrix metalloproteinase 14 modulates signal transduction and angiogenesis in the cornea. Surv. Ophthalmol. 2015;61:478–497. doi: 10.1016/j.survophthal.2015.11.006. PubMed DOI PMC
Sharif Z., Sharif W. Corneal neovascularization: Updates on pathophysiology, investigations & management. Romanian J. Ophthalmol. 2019;63:15–22. doi: 10.22336/rjo.2019.4. PubMed DOI PMC
Abdelfattah N.S., Amgad M., Zayed A.A. Host immune cellular reactions in corneal neovascularization. Int. J. Ophthalmol. 2016;9:625–633. doi: 10.18240/ijo.2016.04.25. PubMed DOI PMC
Hadrian K., Willenborg S., Bock F., Cursiefen C., Eming S.A., Hos D. Macrophage-Mediated Tissue Vascularization: Similarities and Differences Between Cornea and Skin. Front. Immunol. 2021;12:667830. doi: 10.3389/fimmu.2021.667830. PubMed DOI PMC
Chang J.-H., Garg N.K., Lunde E., Han K.-Y., Jain S., Azar D.T. Corneal Neovascularization: An Anti-VEGF Therapy Review. Surv. Ophthalmol. 2012;57:415–429. doi: 10.1016/j.survophthal.2012.01.007. PubMed DOI PMC
Shahriary A., Sabzevari M., Jadidi K., Yazdani F., Aghamollaei H. The Role of Inflammatory Cytokines in Neovascularization of Chemical Ocular Injury. Ocul. Immunol. Inflamm. 2021;30:1149–1161. doi: 10.1080/09273948.2020.1870148. PubMed DOI
Lee H.-K., Lee S.-M., Lee D.-I. Corneal Lymphangiogenesis: Current Pathophysiological Understandings and Its Functional Role in Ocular Surface Disease. Int. J. Mol. Sci. 2021;22:11628. doi: 10.3390/ijms222111628. PubMed DOI PMC
Zahir-Jouzdani F., Atyabi F., Mojtabavi N. Interleukin-6 participation in pathology of ocular diseases. Pathophysiology. 2017;24:123–131. doi: 10.1016/j.pathophys.2017.05.005. PubMed DOI
Zhang W., Magadi S., Li Z., Smith C.W., Burns A.R. IL-20 promotes epithelial healing of the injured mouse cornea. Exp. Eye Res. 2017;154:22–29. doi: 10.1016/j.exer.2016.11.006. PubMed DOI PMC
Hanna C., O’Brien J.E. Cell Production and Migration in the Epithelial Layer of the Cornea. Arch. Ophthalmol. 1960;64:536–539. doi: 10.1001/archopht.1960.01840010538009. PubMed DOI
Wilson S.E., Mohan R.R., Mohan R.R., Ambrósio R., Hong J., Lee J. The Corneal Wound Healing Response: Cytokine-mediated Interaction of the Epithelium, Stroma, and Inflammatory Cells. Prog. Retin. Eye Res. 2001;20:625–637. doi: 10.1016/S1350-9462(01)00008-8. PubMed DOI
Lu L., Reinach P.S., Kao W.W.-Y. Corneal Epithelial Wound Healing. Exp. Biol. Med. 2001;226:653–664. doi: 10.1177/153537020222600711. PubMed DOI
Amin S., Jalilian E., Katz E., Frank C., Yazdanpanah G., Guaiquil V.H., Rosenblatt M.I., Djalilian A.R. The Limbal Niche and Regenerative Strategies. Vision. 2021;5:43. doi: 10.3390/vision5040043. PubMed DOI PMC
Sugioka K., Fukuda K., Nishida T., Kusaka S. The fibrinolytic system in the cornea: A key regulator of corneal wound healing and biological defense. Exp. Eye Res. 2021;204:108459. doi: 10.1016/j.exer.2021.108459. PubMed DOI
Chandrasekher G., Ma X., Lallier T., Bazan H. Delay of corneal epithelial wound healing and induction of keratocyte apoptosis by platelet-activating factor. Investig. Ophthalmol. V. Sci. 2002;43:1422–1428. PubMed
Wilson S.E. Fibrosis Is a Basement Membrane-Related Disease in the Cornea: Injury and Defective Regeneration of Basement Membranes May Underlie Fibrosis in Other Organs. Cells. 2022;11:309. doi: 10.3390/cells11020309. PubMed DOI PMC
Baratta R.O., Schlumpf E., Del Buono B.J., DeLorey S.S., Calkins D.J. Corneal collagen as a potential therapeutic target in dry eye disease. Surv. Ophthalmol. 2021;67:60–67. doi: 10.1016/j.survophthal.2021.04.006. PubMed DOI
Wilson S.E. Bowman’s layer in the cornea– structure and function and regeneration. Exp. Eye Res. 2020;195:108033. doi: 10.1016/j.exer.2020.108033. PubMed DOI PMC
Alberto D., Garello R. Corneal Sublayers Thickness Estimation Obtained by High-Resolution FD-OCT. Int. J. Biomed. Imaging. 2013;2013:11. doi: 10.1155/2013/989624. PubMed DOI PMC
Wilson S.E. Interleukin-1 and Transforming Growth Factor Beta: Commonly Opposing, but Sometimes Supporting, Master Regulators of the Corneal Wound Healing Response to Injury. Investig. Opthalmol. Vis. Sci. 2021;62:8. doi: 10.1167/iovs.62.4.8. PubMed DOI PMC
Wagoner M.D. Chemical injuries of the eye: Current concepts in pathophysiology and therapy. Surv. Ophthalmol. 1997;41:275–313. doi: 10.1016/S0039-6257(96)00007-0. PubMed DOI
Hong J., Liu J., Lee J., Mohan R., Mohan R., Woods D., He Y., Wilson S. Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea. Invest. Ophthalmol. Vis. Sci. 2001;42:2795–2803. PubMed
Klingberg F., Hinz B., White E.S. The myofibroblast matrix: Implications for tissue repair and fibrosis. J. Pathol. 2012;229:298–309. doi: 10.1002/path.4104. PubMed DOI PMC
Hayes S., Lewis P., Islam M.M., Doutch J., Sorensen T., White T., Griffith M., Meek K.M. The structural and optical properties of type III human collagen biosynthetic corneal substitutes. Acta Biomater. 2015;25:121–130. doi: 10.1016/j.actbio.2015.07.009. PubMed DOI PMC
Massoudi D., Malecaze F., Galiacy S.D. Collagens and proteoglycans of the cornea: Importance in transparency and visual disorders. Cell Tissue Res. 2015;363:337–349. doi: 10.1007/s00441-015-2233-5. PubMed DOI
Ishizaki M., Shimoda M., Wakamatsu K., Ogro T., Yamanaka N., Kao C.W.-C., Kao W.W.-Y. Stromal fibroblasts are associated with collagen IV in scar tissues of alkali-burned and lacerated corneas. Curr. Eye Res. 1997;16:339–348. doi: 10.1076/ceyr.16.4.339.10684. PubMed DOI
Kempuraj D., Mohan R.R. Autophagy in Extracellular Matrix and Wound Healing Modulation in the Cornea. Biomedicines. 2022;10:339. doi: 10.3390/biomedicines10020339. PubMed DOI PMC
Chameettachal S., Prasad D., Parekh Y., Basu S., Singh V., Bokara K.K., Pati F. Prevention of Corneal Myofibroblastic Differentiation In Vitro Using a Biomimetic ECM Hydrogel for Corneal Tissue Regeneration. ACS Appl. Bio Mater. 2020;4:533–544. doi: 10.1021/acsabm.0c01112. PubMed DOI
Chaurasia S.S., Lim R.R., Lakshminarayanan R., Mohan R.R. Nanomedicine Approaches for Corneal Diseases. J. Funct. Biomater. 2015;6:277–298. doi: 10.3390/jfb6020277. PubMed DOI PMC
Hussain N.A., Figueiredo F.C., Connon C.J. Use of biomaterials in corneal endothelial repair. Ther. Adv. Ophthalmol. 2021;13:25158414211058249. doi: 10.1177/25158414211058249. PubMed DOI PMC
Kocluk Y., Burcu A., Sukgen E.A. Demonstration of cornea Dua’s layer at a deep anterior lamellar keratoplasty surgery. Oman J. Ophthalmol. 2016;9:179–181. doi: 10.4103/0974-620X.192296. PubMed DOI PMC
de Oliveira R.C., Wilson S.E. Descemet’s membrane development, structure, function and regeneration. Exp. Eye Res. 2020;197:108090. doi: 10.1016/j.exer.2020.108090. PubMed DOI
Song Y., Overmass M., Fan J., Hodge C., Sutton G., Lovicu F.J., You J. Application of Collagen I and IV in Bioengineering Transparent Ocular Tissues. Front. Surg. 2021;8:639500. doi: 10.3389/fsurg.2021.639500. PubMed DOI PMC
Vercammen H., Miron A., Oellerich S., Melles G.R., Dhubhghaill S.N., Koppen C., Bogerd B.V.D. Corneal endothelial wound healing: Understanding the regenerative capacity of the innermost layer of the cornea. Transl. Res. 2022;248:111–127. doi: 10.1016/j.trsl.2022.05.003. PubMed DOI
Miyamoto T., Sumioka T., Saika S. Endothelial Mesenchymal Transition: A Therapeutic Target in Retrocorneal Membrane. Cornea. 2010;29:S52–S56. doi: 10.1097/ICO.0b013e3181efe36a. PubMed DOI
Ishizaki M., Zhu G., Haseba T., Shafer S., Kao W. Expression of collagen I, smooth muscle alpha-actin, and vimentin during the healing of alkali-burned and lacerated corneas. Invest. Ophthalmol. Vis. Sci. 1993;32:3320–3328. PubMed
Tartaglia G., Cao Q., Padron Z., South A. Impaired Wound Healing, Fibrosis, and Cancer: The Paradigm of Recessive Dystrophic Epidermolysis Bullosa. Int. J. Mol. Sci. 2021;22:5104. doi: 10.3390/ijms22105104. PubMed DOI PMC
O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95. doi: 10.1016/S1369-7021(11)70058-X. DOI
Naomi R., Bahari H., Ridzuan P., Othman F. Natural-Based Biomaterial for Skin Wound Healing (Gelatin vs. Collagen): Expert Review. Polymers. 2021;13:2319. doi: 10.3390/polym13142319. PubMed DOI PMC
Chouhan D., Mandal B.B. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater. 2019;103:24–51. doi: 10.1016/j.actbio.2019.11.050. PubMed DOI
Matai I., Kaur G., Seyedsalehi A., McClinton A., Laurencin C.T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. doi: 10.1016/j.biomaterials.2019.119536. PubMed DOI
Davison-Kotler E., Marshall W.S., García-Gareta E. Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering. 2019;6:56. doi: 10.3390/bioengineering6030056. PubMed DOI PMC
Mathew-Steiner S., Roy S., Sen C. Collagen in Wound Healing. Bioengineering. 2021;8:63. doi: 10.3390/bioengineering8050063. PubMed DOI PMC
Araujo T.A.T., Almeida M.C., Avanzi I., Parisi J., Sales A.F.S., Na Y., Renno A. Collagen membranes for skin wound repair: A systematic review. J. Biomater. Appl. 2020;36:95–112. doi: 10.1177/0885328220980278. PubMed DOI
Chattopadhyay S., Raines R.T. Collagen-based biomaterials for wound healing. Biopolymers. 2014;101:821–833. doi: 10.1002/bip.22486. PubMed DOI PMC
Walimbe T., Panitch A. Best of Both Hydrogel Worlds: Harnessing Bioactivity and Tunability by Incorporating Glycosaminoglycans in Collagen Hydrogels. Bioengineering. 2020;7:156. doi: 10.3390/bioengineering7040156. PubMed DOI PMC
Sharma S., Rai V.K., Narang R.K., Markandeywar T.S. Collagen-based formulations for wound healing: A literature review. Life Sci. 2021;290:120096. doi: 10.1016/j.lfs.2021.120096. PubMed DOI
Cziperle D. Avitene™ Microfibrillar Collagen Hemostat for Adjunctive Hemostasis in Surgical Procedures: A Systematic Literature Review. Med. Dev. 2021;14:155–163. doi: 10.2147/MDER.S298207. PubMed DOI PMC
Schimmer C., Gross J., Ramm E., Morfeld B.-C., Hoffmann G., Panholzer B., Hedderich J., Leyh R., Cremer J., Petzina R. Prevention of surgical site sternal infections in cardiac surgery: A two-centre prospective randomized controlled study. Eur. J. Cardio-Thoracic Surg. 2016;51:67–72. doi: 10.1093/ejcts/ezw225. PubMed DOI
Jones K., Williams C., Yuan T., Bs A.M.D.-F., Bs R.C.W., Burton T., Hamlin N., Martinez L. Comparative in vitro study of commercially available products for alveolar ridge preservation. J. Periodontol. 2021;93:403–411. doi: 10.1002/JPER.21-0087. PubMed DOI
Ruszczak Z. Effect of collagen matrices on dermal wound healing. Adv. Drug Deliv. Rev. 2003;55:1595–1611. doi: 10.1016/j.addr.2003.08.003. PubMed DOI
Chia C.L.K., Shelat V.G., Low W., George S., Rao J. The Use of Collatamp G, Local Gentamicin-Collagen Sponge, in Reducing Wound Infection. Int. Surg. 2014;99:565–570. doi: 10.9738/INTSURG-D-13-00171.1. PubMed DOI PMC
Santhanam R., Rameli M.A.P., Al Jeffri A., Ismail W.I.W. Bovine Based Collagen Dressings in Wound Care Management. J. Pharm. Res. Int. 2020;32:48–63. doi: 10.9734/jpri/2020/v32i3330949. DOI
Koehler J., Brandl F.P., Goepferich A.M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 2018;100:1–11. doi: 10.1016/j.eurpolymj.2017.12.046. DOI
Moura L.I.F., Dias A.M.A., Carvalho E., de Sousa H.C. Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review. Acta Biomater. 2013;9:7093–7114. doi: 10.1016/j.actbio.2013.03.033. PubMed DOI
Karr J.C., Taddei A.R., Picchietti S., Gambellini G., Fausto A.M., Giorgi F. A Morphological and Biochemical Analysis Comparative Study of the Collagen Products Biopad, Promogram, Puracol, and Colactive. Adv. Ski. Wound Care. 2011;24:208–216. doi: 10.1097/01.ASW.0000397897.18003.ce. PubMed DOI
Lo S., Fauzi M. Current Update of Collagen Nanomaterials—Fabrication, Characterisation and Its Applications: A Review. Pharmaceutics. 2021;13:316. doi: 10.3390/pharmaceutics13030316. PubMed DOI PMC
Kaur J. Osteo-odonto keratoprosthesis: Innovative dental and ophthalmic blending. J. Indian Prosthodont. Soc. 2018;18:89–95. doi: 10.4103/jips.jips_283_17. PubMed DOI PMC
Matthyssen S., Van den Bogerd B., Dhubhghaill S.N., Koppen C., Zakaria N. Corneal regeneration: A review of stromal replacements. Acta Biomater. 2018;69:31–41. doi: 10.1016/j.actbio.2018.01.023. PubMed DOI
Polisetti N., Islam M.M., Griffith M. The Artificial Cornea. Corneal Regen. Med. 2013;1014:45–52. doi: 10.1007/978-1-62703-432-6_2. PubMed DOI
Simpson F.C., McTiernan C.D., Islam M.M., Buznyk O., Lewis P.N., Meek K.M., Haagdorens M., Audiger C., Lesage S., Gueriot F.-X., et al. Collagen analogs with phosphorylcholine are inflammation-suppressing scaffolds for corneal regeneration from alkali burns in mini-pigs. Commun. Biol. 2021;4:608. doi: 10.1038/s42003-021-02108-y. PubMed DOI PMC
Yang Y., Zhang Y., Yan Y., Ji Q., Dai Y., Jin S., Liu Y., Chen J., Teng L. A Sponge-Like Double-Layer Wound Dressing with Chitosan and Decellularized Bovine Amniotic Membrane for Promoting Diabetic Wound Healing. Polymers. 2020;12:535. doi: 10.3390/polym12030535. PubMed DOI PMC
Cheng X., Shao Z., Li C., Yu L., Raja M.A., Liu C. Isolation, Characterization and Evaluation of Collagen from Jellyfish Rhopilema esculentum Kishinouye for Use in Hemostatic Applications. PLoS ONE. 2017;12:e0169731. doi: 10.1371/journal.pone.0169731. PubMed DOI PMC
He Y., Wang J., Si Y., Wang X., Deng H., Sheng Z., Li Y., Liu J., Zhao J. A novel gene recombinant collagen hemostatic sponge with excellent biocompatibility and hemostatic effect. Int. J. Biol. Macromol. 2021;178:296–305. doi: 10.1016/j.ijbiomac.2021.02.162. PubMed DOI
Sorushanova A., Skoufos I., Tzora A., Mullen A.M., Zeugolis D.I. The influence of animal species, gender and tissue on the structural, biophysical, biochemical and biological properties of collagen sponges. J. Mater. Sci. Mater. Med. 2021;32:12. doi: 10.1007/s10856-020-06485-4. PubMed DOI PMC
Boyce S.T., Christianson D.J., Hansbrough J.F. Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes. J. Biomed. Mater. Res. 1988;22:939–957. doi: 10.1002/jbm.820221008. PubMed DOI
Pozzolini M., Gallus L., Ghignone S., Ferrando S., Candiani S., Bozzo M., Bertolino M., Costa G., Bavestrello G., Scarfì S. Insights into the evolution of metazoan regenerative mechanisms: TGF superfamily member roles in tissue regeneration of the marine sponge Chondrosia reniformis Nardo, 1847. J. Exp. Biol. 2019;222 doi: 10.1242/jeb.207894. PubMed DOI
Chang P., Guo B., Hui Q., Liu X., Tao K. A bioartificial dermal regeneration template promotes skin cell proliferation in vitro and enhances large skin wound healing in vivo. Oncotarget. 2017;8:25226–25241. doi: 10.18632/oncotarget.16005. PubMed DOI PMC
Jinno C., Morimoto N., Ito R., Sakamoto M., Ogino S., Taira T., Suzuki S. A Comparison of Conventional Collagen Sponge and Collagen-Gelatin Sponge in Wound Healing. BioMed Res. Int. 2016;2016:4567146. doi: 10.1155/2016/4567146. PubMed DOI PMC
Borene M.L., Barocas V.H., Hubel A. Mechanical and cellular changes during compaction of a collagen-sponge-based corneal stromal equivalent. Ann. Biomed. Eng. 2004;32:274–283. doi: 10.1023/B:ABME.0000012747.97620.3a. PubMed DOI
Orwin E.J., Hubel A. In Vitro Culture Characteristics of Corneal Epithelial, Endothelial, and Keratocyte Cells in a Native Collagen Matrix. Tissue Eng. 2000;6:307–319. doi: 10.1089/107632700418038. PubMed DOI
Aswathy S., Narendrakumar U., Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6:e03719. doi: 10.1016/j.heliyon.2020.e03719. PubMed DOI PMC
Correa S., Grosskopf A.K., Hernandez H.L., Chan D., Yu A.C., Stapleton L.M., Appel E.A. Translational Applications of Hydrogels. Chem. Rev. 2021;121:11385–11457. doi: 10.1021/acs.chemrev.0c01177. PubMed DOI PMC
Mude L., Sanapalli B.K.R., Narayanan A., Singh S.K., Karri V.V.S.R. Overview of in situ gelling injectable hydrogels for diabetic wounds. Drug Dev. Res. 2021;82:503–522. doi: 10.1002/ddr.21788. PubMed DOI
Bonnesœur S., Morin-Grognet S., Thoumire O., Le Cerf D., Boyer O., Vannier J., Labat B. Hyaluronan-based hydrogels as versatile tumor-like models: Tunable ECM and stiffness with genipin-crosslinking. J. Biomed. Mater. Res. Part A. 2020;108:1256–1268. doi: 10.1002/jbm.a.36899. PubMed DOI
Ying H., Zhou J., Wang M., Su D., Ma Q., Lv G., Chen J. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater. Sci. Eng. C. 2019;101:487–498. doi: 10.1016/j.msec.2019.03.093. PubMed DOI
Tripathi D., Sharma A., Tyagi P., Beniwal C.S., Mittal G., Jamini A., Singh H., Tyagi A. Fabrication of Three-Dimensional Bioactive Composite Scaffolds for Hemostasis and Wound Healing. AAPS PharmSciTech. 2021;22:138. doi: 10.1208/s12249-021-02010-0. PubMed DOI
Liu L., Wen H., Rao Z., Zhu C., Liu M., Min L., Fan L., Tao S. Preparation and characterization of chitosan–collagen peptide/oxidized konjac glucomannan hydrogel. Int. J. Biol. Macromol. 2018;108:376–382. doi: 10.1016/j.ijbiomac.2017.11.128. PubMed DOI
Tripathi D., Rastogi K., Tyagi P., Rawat H., Mittal G., Jamini A., Singh H., Tyagi A. Comparative Analysis of Collagen and Chitosan-based Dressing for Haemostatic and Wound Healing Application. AAPS PharmSciTech. 2021;22:76. doi: 10.1208/s12249-021-01944-9. PubMed DOI
Ding C., Tian M., Feng R., Dang Y., Zhang M. Novel Self-Healing Hydrogel with Injectable, pH-Responsive, Strain-Sensitive, Promoting Wound-Healing, and Hemostatic Properties Based on Collagen and Chitosan. ACS Biomater. Sci. Eng. 2020;6:3855–3867. doi: 10.1021/acsbiomaterials.0c00588. PubMed DOI
Deng A., Yang Y., Du S., Yang X., Pang S., Wang X., Yang S. Preparation of a recombinant collagen-peptide (RHC)-conjugated chitosan thermosensitive hydrogel for wound healing. Mater. Sci. Eng. C. 2020;119:111555. doi: 10.1016/j.msec.2020.111555. PubMed DOI
Meuli M., Hartmann-Fritsch F., Hüging M., Marino D., Saglini M., Hynes S., Neuhaus K., Manuel E., Middelkoop E., Reichmann E., et al. A Cultured Autologous Dermo-epidermal Skin Substitute for Full-Thickness Skin Defects: A Phase I, Open, Prospective Clinical Trial in Children. Plast. Reconstr. Surg. 2019;144:188–198. doi: 10.1097/PRS.0000000000005746. PubMed DOI
Dearman B.L., Boyce S.T., Greenwood J.E. Advances in Skin Tissue Bioengineering and the Challenges of Clinical Translation. Front. Surg. 2021;8:640879. doi: 10.3389/fsurg.2021.640879. PubMed DOI PMC
Lynch C.R., Kondiah P.P.D., Choonara Y.E., Du Toit L.C., Ally N., Pillay V. Hydrogel Biomaterials for Application in Ocular Drug Delivery. Front. Bioeng. Biotechnol. 2020;8:228. doi: 10.3389/fbioe.2020.00228. PubMed DOI PMC
Xeroudaki M., Thangavelu M., Lennikov A., Ratnayake A., Bisevac J., Petrovski G., Fagerholm P., Rafat M., Lagali N. A porous collagen-based hydrogel and implantation method for corneal stromal regeneration and sustained local drug delivery. Sci. Rep. 2020;10:16936. doi: 10.1038/s41598-020-73730-9. PubMed DOI PMC
McCoy M.G., Seo B.R., Choi S., Fischbach C. Collagen I hydrogel microstructure and composition conjointly regulate vascular network formation. Acta Biomater. 2016;44:200–208. doi: 10.1016/j.actbio.2016.08.028. PubMed DOI PMC
Goodarzi H., Jadidi K., Pourmotabed S., Sharifi E., Aghamollaei H. Preparation and in vitro characterization of cross-linked collagen–gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int. J. Biol. Macromol. 2018;126:620–632. doi: 10.1016/j.ijbiomac.2018.12.125. PubMed DOI
Chen Z., You J., Liu X., Cooper S., Hodge C., Sutton G., Crook J.M., Wallace G.G. Biomaterials for corneal bioengineering. Biomed. Mater. 2018;13:032002. doi: 10.1088/1748-605X/aa92d2. PubMed DOI
Jangamreddy J.R., Haagdorens M.K., Islam M.M., Lewis P., Samanta A., Fagerholm P., Liszka A., Ljunggren M.K., Buznyk O., Alarcon E.I., et al. Short peptide analogs as alternatives to collagen in pro-regenerative corneal implants. Acta Biomater. 2018;69:120–130. doi: 10.1016/j.actbio.2018.01.011. PubMed DOI PMC
Islam M.M., Ravichandran R., Olsen D., Ljunggren M.K., Fagerholm P., Lee C.J., Griffith M., Phopase J. Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation. RSC Adv. 2016;6:55745–55749. doi: 10.1039/C6RA08895C. DOI
Fernandes-Cunha G.M., Chen K.M., Chen F., Le P., Han J.H., Mahajan L.A., Lee H.J., Na K.S., Myung D. In situ-forming collagen hydrogel crosslinked via multi-functional PEG as a matrix therapy for corneal defects. Sci. Rep. 2020;10:16671. doi: 10.1038/s41598-020-72978-5. PubMed DOI PMC
Na K.-S., Fernandes-Cunha G.M., Varela I.B., Lee H.J., Seo Y.A., Myung D. Effect of mesenchymal stromal cells encapsulated within polyethylene glycol-collagen hydrogels formed in situ on alkali-burned corneas in an ex vivo organ culture model. Cytotherapy. 2021;23:500–509. doi: 10.1016/j.jcyt.2021.02.001. PubMed DOI PMC
Islam M.M., Cėpla V., He C., Edin J., Rakickas T., Kobuch K., Ruželė Z., Jackson W.B., Rafat M., Lohmann C.P., et al. Functional fabrication of recombinant human collagen–phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomater. 2015;12:70–80. doi: 10.1016/j.actbio.2014.10.035. PubMed DOI
Mullins R., Richards C., Walker T. Allergic reactions to oral, surgical and topical bovine collagen: Anaphylactic risk for surgeons. Aust. New Zealand J. Ophthalmol. 1996;24:257–260. doi: 10.1111/j.1442-9071.1996.tb01589.x. PubMed DOI
Pekar J.E., Magee A., Parker E., Moshiri N., Izhikevich K., Havens J.L., Gangavarapu K., Serrano L.M.M., Crits-Christoph A., Matteson N.L., et al. The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science. 2022;377:960–966. doi: 10.1126/science.abp8337. PubMed DOI PMC
Sbricoli L., Guazzo R., Annunziata M., Gobbato L., Bressan E., Nastri L. Selection of Collagen Membranes for Bone Regeneration: A Literature Review. Materials. 2020;13:786. doi: 10.3390/ma13030786. PubMed DOI PMC
Kaczmarek B., Mazur O. Collagen-Based Materials Modified by Phenolic Acids—A Review. Materials. 2020;13:3641. doi: 10.3390/ma13163641. PubMed DOI PMC
Shah R., Stodulka P., Skopalova K., Saha P. Dual Crosslinked Collagen/Chitosan Film for Potential Biomedical Applications. Polymers. 2019;11:2094. doi: 10.3390/polym11122094. PubMed DOI PMC
Socrates R., Prymak O., Loza K., Sakthivel N., Rajaram A., Epple M., Kalkura S.N. Biomimetic fabrication of mineralized composite films of nanosilver loaded native fibrillar collagen and chitosan. Mater. Sci. Eng. C. 2019;99:357–366. doi: 10.1016/j.msec.2019.01.101. PubMed DOI