• This record comes from PubMed

Collagen as a Biomaterial for Skin and Corneal Wound Healing

. 2022 Nov 16 ; 13 (4) : . [epub] 20221116

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
RVO:61989592 and IGA_LF_2022_025 Palacký University in Olomouc

The cornea and the skin are two organs that form the outer barrier of the human body. When either is injured (e.g., from surgery, physical trauma, or chemical burns), wound healing is initiated to restore integrity. Many cells are activated during wound healing. In particular, fibroblasts that are stimulated often transition into repair fibroblasts or myofibroblasts that synthesize extracellular matrix (ECM) components into the wound area. Control of wound ECM deposition is critical, as a disorganized ECM can block restoration of function. One of the most abundant structural proteins in the mammalian ECM is collagen. Collagen type I is the main component in connective tissues. It can be readily obtained and purified, and short analogs have also been developed for tissue engineering applications, including modulating the wound healing response. This review discusses the effect of several current collagen implants on the stimulation of corneal and skin wound healing. These range from collagen sponges and hydrogels to films and membranes.

See more in PubMed

Parenteau-Bareil R., Gauvin R., Berthod F. Collagen-Based Biomaterials for Tissue Engineering Applications. Materials. 2010;3:1863–1887. doi: 10.3390/ma3031863. DOI

Son Y.J., Tse J.W., Zhou Y., Mao W., Yim E.K.F., Yoo H.S. Biomaterials and controlled release strategy for epithelial wound healing. Biomater. Sci. 2019;7:4444–4471. doi: 10.1039/C9BM00456D. PubMed DOI

Netto M.V., Mohan R.R., Ambrósio R., Hutcheon A.E.K., Zieske J., Wilson S. Wound Healing in the Cornea. Cornea. 2005;24:509–522. doi: 10.1097/01.ico.0000151544.23360.17. PubMed DOI

Bukowiecki A., Hos D., Cursiefen C., Eming S.A. Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities. Int. J. Mol. Sci. 2017;18:1257. doi: 10.3390/ijms18061257. PubMed DOI PMC

Li Y., Jeong J., Song W. Molecular Characteristics and Distribution of Adult Human Corneal Immune Cell Types. Front. Immunol. 2022;13:798346. doi: 10.3389/fimmu.2022.798346. PubMed DOI PMC

Nour S., Baheiraei N., Imani R., Khodaei M., Alizadeh A., Rabiee N., Moazzeni S.M. A review of accelerated wound healing approaches: Biomaterial- assisted tissue remodeling. J. Mater. Sci. Mater. Med. 2019;30:120. doi: 10.1007/s10856-019-6319-6. PubMed DOI

Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J. Cell Sci. 2010;123:4195–4200. doi: 10.1242/jcs.023820. PubMed DOI PMC

Ricard-Blum S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2011;3:a004978. doi: 10.1101/cshperspect.a004978. PubMed DOI PMC

Shoulders M.D., Raines R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC

Kananavičiūtė R., Kvederavičiūtė K., Dabkevičienė D., Mackevičius G., Kuisienė N. Collagen-like sequences encoded by extremophilic and extremotolerant bacteria. Genomics. 2019;112:2271–2281. doi: 10.1016/j.ygeno.2019.12.023. PubMed DOI

Yamauchi M., Taga Y., Hattori S., Shiiba M., Terajima M. Analysis of Collagen and Elastin Cross-Links. Vol. 143. Academic Press; Cambridge, MA, USA: 2018. Methods in Cell Biology; pp. 115–132. PubMed DOI

Costa A., Naranjo J.D., Londono R., Badylak S.F. Biologic Scaffolds. Cold Spring Harb. Perspect. Med. 2017;7:a025676. doi: 10.1101/cshperspect.a025676. PubMed DOI PMC

Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed. Eng. Online. 2019;18:1–74. doi: 10.1186/s12938-019-0647-0. PubMed DOI PMC

Ramshaw J.A.M. Biomedical applications of collagens. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015;104:665–675. doi: 10.1002/jbm.b.33541. PubMed DOI

Ramshaw J.A.M., Werkmeister J.A., Dumsday G.J. Bioengineered collagens. Bioengineered. 2014;5:227–233. doi: 10.4161/bioe.28791. PubMed DOI PMC

Yu X., Tang C., Xiong S., Yuan Q., Gu Z.P., Li Z., Hu Y. Modification of Collagen for Biomedical Applications: A Review of Physical and Chemical Methods. Curr. Org. Chem. 2016;20:1797–1812. doi: 10.2174/1385272820666151102213025. DOI

Bonnans C., Chou J., Werb Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014;15:786–801. doi: 10.1038/nrm3904. PubMed DOI PMC

Theocharis A.D., Manou D., Karamanos N.K. The extracellular matrix as a multitasking player in disease. FEBS J. 2019;286:2830–2869. doi: 10.1111/febs.14818. PubMed DOI

Manou D., Caon I., Bouris P., Triantaphyllidou I.-E., Giaroni C., Passi A., Karamanos N.K., Vigetti D., Theocharis A.D. The Complex Interplay between Extracellular Matrix and Cells in Tissues. Vol. 1952. Springer Nature; Berlin, Germany: 2019. p. 485. PubMed DOI

Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001. PubMed DOI

Karamanos N.K. Extracellular matrix: Key structural and functional meshwork in health and disease. FEBS J. 2019;286:2826–2829. doi: 10.1111/febs.14992. PubMed DOI

Vindin H., Mithieux S.M., Weiss A.S. Elastin architecture. Matrix Biol. 2019;84:4–16. doi: 10.1016/j.matbio.2019.07.005. PubMed DOI

Kular J.K., Basu S., Sharma R.I. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng. 2014;5:2041731414557112. doi: 10.1177/2041731414557112. PubMed DOI PMC

Parisi L., Toffoli A., Ghezzi B., Mozzoni B., Lumetti S., Macaluso G.M. A glance on the role of fibronectin in controlling cell response at biomaterial interface. Jpn. Dent. Sci. Rev. 2019;56:50–55. doi: 10.1016/j.jdsr.2019.11.002. PubMed DOI PMC

Sabatier L., Chen D., Fagotto-Kaufmann C., Hubmacher D., McKee M.D., Annis D.S., Mosher D.F., Reinhardt D.P. Fibrillin Assembly Requires Fibronectin. Mol. Biol. Cell. 2009;20:846–858. doi: 10.1091/mbc.e08-08-0830. PubMed DOI PMC

Köwitsch A., Zhou G., Groth T. Medical application of glycosaminoglycans: A review. J. Tissue Eng. Regen. Med. 2017;12:e23–e41. doi: 10.1002/term.2398. PubMed DOI

Kechagia J.Z., Ivaska J., Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 2019;20:457–473. doi: 10.1038/s41580-019-0134-2. PubMed DOI

Harburger D.S., Calderwood D.A. Integrin signalling at a glance. J. Cell Sci. 2009;122:159–163. doi: 10.1242/jcs.018093. PubMed DOI PMC

Pankov R., Yamada K.M. Fibronectin at a glance. J. Cell Sci. 2002;115:3861–3863. doi: 10.1242/jcs.00059. PubMed DOI

Rousselle P., Montmasson M., Garnier C. Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol. 2018;75–76:12–26. doi: 10.1016/j.matbio.2018.01.002. PubMed DOI

Dhavalikar P., Robinson A., Lan Z., Jenkins D., Chwatko M., Salhadar K., Jose A., Kar R., Shoga E., Kannapiran A., et al. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv. Health Mater. 2020;9:2000795. doi: 10.1002/adhm.202000795. PubMed DOI PMC

Mezu-Ndubuisi O.J., Maheshwari A. The role of integrins in inflammation and angiogenesis. Pediatr. Res. 2020;89:1619–1626. doi: 10.1038/s41390-020-01177-9. PubMed DOI PMC

Zeltz C., Gullberg D. The integrin–collagen connection–a glue for tissue repair? J. Cell Sci. 2016;129:653–664. doi: 10.1242/jcs.188672. PubMed DOI

Adamiak K., Sionkowska A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol. 2020;161:550–560. doi: 10.1016/j.ijbiomac.2020.06.075. PubMed DOI

Heino J. The collagen family members as cell adhesion proteins. BioEssays. 2007;29:1001–1010. doi: 10.1002/bies.20636. PubMed DOI

Lorenzo-Martín E., Gallego-Muñoz P., Mar S., Fernández I., Cidad P., Martínez-García M.C. Dynamic changes of the extracellular matrix during corneal wound healing. Exp. Eye Res. 2019;186:107704. doi: 10.1016/j.exer.2019.107704. PubMed DOI

Torricelli A.A.M., Singh V., Santhiago M.R., Wilson S.E. The Corneal Epithelial Basement Membrane: Structure, Function, and Disease. Investig. Opthalmol. Vis. Sci. 2013;54:6390–6400. doi: 10.1167/iovs.13-12547. PubMed DOI PMC

Coupry I., Sibon I., Mortemousque B., Rouanet F., Miné M., Goizet C. Ophthalmological Features Associated With COL4A1 Mutations. Arch. Ophthalmol. 2010;128:483–489. doi: 10.1001/archophthalmol.2010.42. PubMed DOI

Wiegand C., Schönfelder U., Abel M., Ruth P., Kaatz M., Hipler U.-C. Protease and pro-inflammatory cytokine concentrations are elevated in chronic compared to acute wounds and can be modulated by collagen type I in vitro. Arch. Dermatol. Res. 2009;302:419–428. doi: 10.1007/s00403-009-1011-1. PubMed DOI

Metzmacher I., Ruth P., Abel M., Friess W. In vitro binding of matrix metalloproteinase-2 (MMP-2), MMP-9, and bacterial collagenase on collagenous wound dressings. Wound Repair Regen. 2007;15:549–555. doi: 10.1111/j.1524-475X.2007.00263.x. PubMed DOI

Schönfelder U., Abel M., Wiegand C., Klemm D., Elsner P., Hipler U.-C. Influence of selected wound dressings on PMN elastase in chronic wound fluid and their antioxidative potential in vitro. Biomaterials. 2005;26:6664–6673. doi: 10.1016/j.biomaterials.2005.04.030. PubMed DOI

Ryšavá A., Čížková K., Franková J., Roubalová L., Ulrichová J., Vostálová J., Vrba J., Zálešák B., Svobodová A.R. Effect of UVA radiation on the Nrf2 signalling pathway in human skin cells. J. Photochem. Photobiol. B Biol. 2020;209:111948. doi: 10.1016/j.jphotobiol.2020.111948. PubMed DOI

Wang P.-H., Huang B.-S., Horng H.-C., Yeh C.-C., Chen Y.-J. Wound healing. J. Chin. Med Assoc. 2018;81:94–101. doi: 10.1016/j.jcma.2017.11.002. PubMed DOI

Sarveswaran K., Kurz V., Dong Z., Tanaka T., Penny S., Timp G. Synthetic Capillaries to Control Microscopic Blood Flow. Sci. Rep. 2016;6:21885. doi: 10.1038/srep21885. PubMed DOI PMC

Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular Biology of the Cell. 4th ed. Garland Science; New York, NY, USA: 2002.

Mosier D. Pathologic Basis of Veterinary Disease. 6th ed. Elsevier; Amsterdam, The Netherlands: 2017. Chapter 2-Vascular Disorders and Thrombosis1; pp. 44–72.e1.

Golebiewska E.M., Poole A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015;29:153–162. doi: 10.1016/j.blre.2014.10.003. PubMed DOI PMC

Farndale R.W., Sixma J.J., Barnes M.J., De Groot P.G. The role of collagen in thrombosis and hemostasis. J. Thromb. Haemost. 2004;2:561–573. doi: 10.1111/j.1538-7836.2004.00665.x. PubMed DOI

Schultz G.S., Davidson J.M., Kirsner R.S., Bornstein P., Herman I.M. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen. 2011;19:134–148. doi: 10.1111/j.1524-475X.2011.00673.x. PubMed DOI PMC

Eming S.A., Martin P., Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014;6:265sr6. doi: 10.1126/scitranslmed.3009337. PubMed DOI PMC

DiPietro L.A. Angiogenesis and wound repair: When enough is enough. J. Leukoc. Biol. 2016;100:979–984. doi: 10.1189/jlb.4MR0316-102R. PubMed DOI PMC

Demling R. Nutrition, anabolism, and the wound healing process: An overview. Eplasty. 2009;9:e9. PubMed PMC

Roh J.S., Sohn D.H. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018;18:e27. doi: 10.4110/in.2018.18.e27. PubMed DOI PMC

Tanaka T., Narazaki M., Kishimoto T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014;6:a016295. doi: 10.1101/cshperspect.a016295. PubMed DOI PMC

Ridiandries A., Tan J.T.M., Bursill C.A. The Role of Chemokines in Wound Healing. Int. J. Mol. Sci. 2018;19:3217. doi: 10.3390/ijms19103217. PubMed DOI PMC

Revilla G., Darwin E., Rantam F. Effect of Allogeneic Bone Marrow-mesenchymal Stem Cells (BM-MSCs) to Accelerate Burn Healing of Rat on the Expression of Collagen Type I and Integrin α2β1. Pak. J. Biol. Sci. 2016;19:345–351. doi: 10.3923/pjbs.2016.345.351. PubMed DOI

Zhao R., Liang H., Clarke E., Jackson C., Xue M. Inflammation in Chronic Wounds. Int. J. Mol. Sci. 2016;17:2085. doi: 10.3390/ijms17122085. PubMed DOI PMC

Twardowski T., Fertala A., Orgel J., Antonio J.S. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers. Curr. Pharm. Des. 2007;13:3608–3621. doi: 10.2174/138161207782794176. PubMed DOI

Frangogiannis N.G. Fibroblast—Extracellular Matrix Interactions in Tissue Fibrosis. Curr. Pathobiol. Rep. 2016;4:11–18. doi: 10.1007/s40139-016-0099-1. PubMed DOI PMC

Ramasastry S.S. Acute Wounds. Clin. Plast. Surg. 2005;32:195–208. doi: 10.1016/j.cps.2004.12.001. PubMed DOI

Cabral-Pacheco G.A., Garza-Veloz I., La Rosa C.C.-D., Ramirez-Acuña J.M., Perez-Romero B.A., Guerrero-Rodriguez J.F., Martinez-Avila N., Martinez-Fierro M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020;21:9739. doi: 10.3390/ijms21249739. PubMed DOI PMC

Pastar I., Stojadinovic O., Yin N.C., Ramirez H., Nusbaum A.G., Sawaya A., Patel S.B., Khalid L., Isseroff R.R., Tomic-Canic M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care. 2014;3:445–464. doi: 10.1089/wound.2013.0473. PubMed DOI PMC

Reinke J., Sorg H. Wound Repair and Regeneration. Eur. Surg. Res. 2012;49:35–43. doi: 10.1159/000339613. PubMed DOI

Velnar T., Bailey T., Smrkolj V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009;37:1528–1542. doi: 10.1177/147323000903700531. PubMed DOI

Ljubimov A.V., Saghizadeh M. Progress in corneal wound healing. Prog. Retin. Eye Res. 2015;49:17–45. doi: 10.1016/j.preteyeres.2015.07.002. PubMed DOI PMC

Guerrero-Moreno A., Baudouin C., Parsadaniantz S.M., Goazigo A.R.-L. Morphological and Functional Changes of Corneal Nerves and Their Contribution to Peripheral and Central Sensory Abnormalities. Front. Cell. Neurosci. 2020;14:610342. doi: 10.3389/fncel.2020.610342. PubMed DOI PMC

Sridhar M.S. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 2018;66:190–194. doi: 10.4103/ijo.IJO_646_17. PubMed DOI PMC

Kamil S., Mohan R.R. Corneal stromal wound healing: Major regulators and therapeutic targets. Ocul. Surf. 2021;19:290–306. doi: 10.1016/j.jtos.2020.10.006. PubMed DOI PMC

Azimzade Y., Hong J., Mashaghi A. Immunophysical analysis of corneal neovascularization: Mechanistic insights and implications for pharmacotherapy. Sci. Rep. 2017;7:12220. doi: 10.1038/s41598-017-12533-x. PubMed DOI PMC

Clahsen T., Büttner C., Hatami N., Reis A., Cursiefen C. Role of Endogenous Regulators of Hem- And Lymphangiogenesis in Corneal Transplantation. J. Clin. Med. 2020;9:479. doi: 10.3390/jcm9020479. PubMed DOI PMC

Di Zazzo A., Gaudenzi D., Yin J., Coassin M., Fernandes M., Dana R., Bonini S. Corneal angiogenic privilege and its failure. Exp. Eye Res. 2021;204:108457. doi: 10.1016/j.exer.2021.108457. PubMed DOI PMC

Adams J.C., Lawler J. The Thrombospondins. Cold Spring Harb. Perspect. Biol. 2011;3:a009712. doi: 10.1101/cshperspect.a009712. PubMed DOI PMC

Dawson D.W., Volpert O.V., Gillis P., Crawford S.E., Xu H.-J., Benedict W., Bouck N.P. Pigment Epithelium-Derived Factor: A Potent Inhibitor of Angiogenesis. Science. 1999;285:245–248. doi: 10.1126/science.285.5425.245. PubMed DOI

Mukwaya A., Jensen L., Lagali N. Relapse of pathological angiogenesis: Functional role of the basement membrane and potential treatment strategies. Exp. Mol. Med. 2021;53:189–201. doi: 10.1038/s12276-021-00566-2. PubMed DOI PMC

Ellenberg D., Azar D.T., Hallak J.A., Tobaigy F., Han K.Y., Jain S., Zhou Z., Chang J.-H. Novel aspects of corneal angiogenic and lymphangiogenic privilege. Prog. Retin. Eye Res. 2010;29:208–248. doi: 10.1016/j.preteyeres.2010.01.002. PubMed DOI PMC

Chang J.-H., Huang Y.-H., Cunningham C.M., Han K.-Y., Chang M., Seiki M., Zhou Z., Azar D.T. Matrix metalloproteinase 14 modulates signal transduction and angiogenesis in the cornea. Surv. Ophthalmol. 2015;61:478–497. doi: 10.1016/j.survophthal.2015.11.006. PubMed DOI PMC

Sharif Z., Sharif W. Corneal neovascularization: Updates on pathophysiology, investigations & management. Romanian J. Ophthalmol. 2019;63:15–22. doi: 10.22336/rjo.2019.4. PubMed DOI PMC

Abdelfattah N.S., Amgad M., Zayed A.A. Host immune cellular reactions in corneal neovascularization. Int. J. Ophthalmol. 2016;9:625–633. doi: 10.18240/ijo.2016.04.25. PubMed DOI PMC

Hadrian K., Willenborg S., Bock F., Cursiefen C., Eming S.A., Hos D. Macrophage-Mediated Tissue Vascularization: Similarities and Differences Between Cornea and Skin. Front. Immunol. 2021;12:667830. doi: 10.3389/fimmu.2021.667830. PubMed DOI PMC

Chang J.-H., Garg N.K., Lunde E., Han K.-Y., Jain S., Azar D.T. Corneal Neovascularization: An Anti-VEGF Therapy Review. Surv. Ophthalmol. 2012;57:415–429. doi: 10.1016/j.survophthal.2012.01.007. PubMed DOI PMC

Shahriary A., Sabzevari M., Jadidi K., Yazdani F., Aghamollaei H. The Role of Inflammatory Cytokines in Neovascularization of Chemical Ocular Injury. Ocul. Immunol. Inflamm. 2021;30:1149–1161. doi: 10.1080/09273948.2020.1870148. PubMed DOI

Lee H.-K., Lee S.-M., Lee D.-I. Corneal Lymphangiogenesis: Current Pathophysiological Understandings and Its Functional Role in Ocular Surface Disease. Int. J. Mol. Sci. 2021;22:11628. doi: 10.3390/ijms222111628. PubMed DOI PMC

Zahir-Jouzdani F., Atyabi F., Mojtabavi N. Interleukin-6 participation in pathology of ocular diseases. Pathophysiology. 2017;24:123–131. doi: 10.1016/j.pathophys.2017.05.005. PubMed DOI

Zhang W., Magadi S., Li Z., Smith C.W., Burns A.R. IL-20 promotes epithelial healing of the injured mouse cornea. Exp. Eye Res. 2017;154:22–29. doi: 10.1016/j.exer.2016.11.006. PubMed DOI PMC

Hanna C., O’Brien J.E. Cell Production and Migration in the Epithelial Layer of the Cornea. Arch. Ophthalmol. 1960;64:536–539. doi: 10.1001/archopht.1960.01840010538009. PubMed DOI

Wilson S.E., Mohan R.R., Mohan R.R., Ambrósio R., Hong J., Lee J. The Corneal Wound Healing Response: Cytokine-mediated Interaction of the Epithelium, Stroma, and Inflammatory Cells. Prog. Retin. Eye Res. 2001;20:625–637. doi: 10.1016/S1350-9462(01)00008-8. PubMed DOI

Lu L., Reinach P.S., Kao W.W.-Y. Corneal Epithelial Wound Healing. Exp. Biol. Med. 2001;226:653–664. doi: 10.1177/153537020222600711. PubMed DOI

Amin S., Jalilian E., Katz E., Frank C., Yazdanpanah G., Guaiquil V.H., Rosenblatt M.I., Djalilian A.R. The Limbal Niche and Regenerative Strategies. Vision. 2021;5:43. doi: 10.3390/vision5040043. PubMed DOI PMC

Sugioka K., Fukuda K., Nishida T., Kusaka S. The fibrinolytic system in the cornea: A key regulator of corneal wound healing and biological defense. Exp. Eye Res. 2021;204:108459. doi: 10.1016/j.exer.2021.108459. PubMed DOI

Chandrasekher G., Ma X., Lallier T., Bazan H. Delay of corneal epithelial wound healing and induction of keratocyte apoptosis by platelet-activating factor. Investig. Ophthalmol. V. Sci. 2002;43:1422–1428. PubMed

Wilson S.E. Fibrosis Is a Basement Membrane-Related Disease in the Cornea: Injury and Defective Regeneration of Basement Membranes May Underlie Fibrosis in Other Organs. Cells. 2022;11:309. doi: 10.3390/cells11020309. PubMed DOI PMC

Baratta R.O., Schlumpf E., Del Buono B.J., DeLorey S.S., Calkins D.J. Corneal collagen as a potential therapeutic target in dry eye disease. Surv. Ophthalmol. 2021;67:60–67. doi: 10.1016/j.survophthal.2021.04.006. PubMed DOI

Wilson S.E. Bowman’s layer in the cornea– structure and function and regeneration. Exp. Eye Res. 2020;195:108033. doi: 10.1016/j.exer.2020.108033. PubMed DOI PMC

Alberto D., Garello R. Corneal Sublayers Thickness Estimation Obtained by High-Resolution FD-OCT. Int. J. Biomed. Imaging. 2013;2013:11. doi: 10.1155/2013/989624. PubMed DOI PMC

Wilson S.E. Interleukin-1 and Transforming Growth Factor Beta: Commonly Opposing, but Sometimes Supporting, Master Regulators of the Corneal Wound Healing Response to Injury. Investig. Opthalmol. Vis. Sci. 2021;62:8. doi: 10.1167/iovs.62.4.8. PubMed DOI PMC

Wagoner M.D. Chemical injuries of the eye: Current concepts in pathophysiology and therapy. Surv. Ophthalmol. 1997;41:275–313. doi: 10.1016/S0039-6257(96)00007-0. PubMed DOI

Hong J., Liu J., Lee J., Mohan R., Mohan R., Woods D., He Y., Wilson S. Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea. Invest. Ophthalmol. Vis. Sci. 2001;42:2795–2803. PubMed

Klingberg F., Hinz B., White E.S. The myofibroblast matrix: Implications for tissue repair and fibrosis. J. Pathol. 2012;229:298–309. doi: 10.1002/path.4104. PubMed DOI PMC

Hayes S., Lewis P., Islam M.M., Doutch J., Sorensen T., White T., Griffith M., Meek K.M. The structural and optical properties of type III human collagen biosynthetic corneal substitutes. Acta Biomater. 2015;25:121–130. doi: 10.1016/j.actbio.2015.07.009. PubMed DOI PMC

Massoudi D., Malecaze F., Galiacy S.D. Collagens and proteoglycans of the cornea: Importance in transparency and visual disorders. Cell Tissue Res. 2015;363:337–349. doi: 10.1007/s00441-015-2233-5. PubMed DOI

Ishizaki M., Shimoda M., Wakamatsu K., Ogro T., Yamanaka N., Kao C.W.-C., Kao W.W.-Y. Stromal fibroblasts are associated with collagen IV in scar tissues of alkali-burned and lacerated corneas. Curr. Eye Res. 1997;16:339–348. doi: 10.1076/ceyr.16.4.339.10684. PubMed DOI

Kempuraj D., Mohan R.R. Autophagy in Extracellular Matrix and Wound Healing Modulation in the Cornea. Biomedicines. 2022;10:339. doi: 10.3390/biomedicines10020339. PubMed DOI PMC

Chameettachal S., Prasad D., Parekh Y., Basu S., Singh V., Bokara K.K., Pati F. Prevention of Corneal Myofibroblastic Differentiation In Vitro Using a Biomimetic ECM Hydrogel for Corneal Tissue Regeneration. ACS Appl. Bio Mater. 2020;4:533–544. doi: 10.1021/acsabm.0c01112. PubMed DOI

Chaurasia S.S., Lim R.R., Lakshminarayanan R., Mohan R.R. Nanomedicine Approaches for Corneal Diseases. J. Funct. Biomater. 2015;6:277–298. doi: 10.3390/jfb6020277. PubMed DOI PMC

Hussain N.A., Figueiredo F.C., Connon C.J. Use of biomaterials in corneal endothelial repair. Ther. Adv. Ophthalmol. 2021;13:25158414211058249. doi: 10.1177/25158414211058249. PubMed DOI PMC

Kocluk Y., Burcu A., Sukgen E.A. Demonstration of cornea Dua’s layer at a deep anterior lamellar keratoplasty surgery. Oman J. Ophthalmol. 2016;9:179–181. doi: 10.4103/0974-620X.192296. PubMed DOI PMC

de Oliveira R.C., Wilson S.E. Descemet’s membrane development, structure, function and regeneration. Exp. Eye Res. 2020;197:108090. doi: 10.1016/j.exer.2020.108090. PubMed DOI

Song Y., Overmass M., Fan J., Hodge C., Sutton G., Lovicu F.J., You J. Application of Collagen I and IV in Bioengineering Transparent Ocular Tissues. Front. Surg. 2021;8:639500. doi: 10.3389/fsurg.2021.639500. PubMed DOI PMC

Vercammen H., Miron A., Oellerich S., Melles G.R., Dhubhghaill S.N., Koppen C., Bogerd B.V.D. Corneal endothelial wound healing: Understanding the regenerative capacity of the innermost layer of the cornea. Transl. Res. 2022;248:111–127. doi: 10.1016/j.trsl.2022.05.003. PubMed DOI

Miyamoto T., Sumioka T., Saika S. Endothelial Mesenchymal Transition: A Therapeutic Target in Retrocorneal Membrane. Cornea. 2010;29:S52–S56. doi: 10.1097/ICO.0b013e3181efe36a. PubMed DOI

Ishizaki M., Zhu G., Haseba T., Shafer S., Kao W. Expression of collagen I, smooth muscle alpha-actin, and vimentin during the healing of alkali-burned and lacerated corneas. Invest. Ophthalmol. Vis. Sci. 1993;32:3320–3328. PubMed

Tartaglia G., Cao Q., Padron Z., South A. Impaired Wound Healing, Fibrosis, and Cancer: The Paradigm of Recessive Dystrophic Epidermolysis Bullosa. Int. J. Mol. Sci. 2021;22:5104. doi: 10.3390/ijms22105104. PubMed DOI PMC

O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95. doi: 10.1016/S1369-7021(11)70058-X. DOI

Naomi R., Bahari H., Ridzuan P., Othman F. Natural-Based Biomaterial for Skin Wound Healing (Gelatin vs. Collagen): Expert Review. Polymers. 2021;13:2319. doi: 10.3390/polym13142319. PubMed DOI PMC

Chouhan D., Mandal B.B. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater. 2019;103:24–51. doi: 10.1016/j.actbio.2019.11.050. PubMed DOI

Matai I., Kaur G., Seyedsalehi A., McClinton A., Laurencin C.T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. doi: 10.1016/j.biomaterials.2019.119536. PubMed DOI

Davison-Kotler E., Marshall W.S., García-Gareta E. Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering. 2019;6:56. doi: 10.3390/bioengineering6030056. PubMed DOI PMC

Mathew-Steiner S., Roy S., Sen C. Collagen in Wound Healing. Bioengineering. 2021;8:63. doi: 10.3390/bioengineering8050063. PubMed DOI PMC

Araujo T.A.T., Almeida M.C., Avanzi I., Parisi J., Sales A.F.S., Na Y., Renno A. Collagen membranes for skin wound repair: A systematic review. J. Biomater. Appl. 2020;36:95–112. doi: 10.1177/0885328220980278. PubMed DOI

Chattopadhyay S., Raines R.T. Collagen-based biomaterials for wound healing. Biopolymers. 2014;101:821–833. doi: 10.1002/bip.22486. PubMed DOI PMC

Walimbe T., Panitch A. Best of Both Hydrogel Worlds: Harnessing Bioactivity and Tunability by Incorporating Glycosaminoglycans in Collagen Hydrogels. Bioengineering. 2020;7:156. doi: 10.3390/bioengineering7040156. PubMed DOI PMC

Sharma S., Rai V.K., Narang R.K., Markandeywar T.S. Collagen-based formulations for wound healing: A literature review. Life Sci. 2021;290:120096. doi: 10.1016/j.lfs.2021.120096. PubMed DOI

Cziperle D. Avitene™ Microfibrillar Collagen Hemostat for Adjunctive Hemostasis in Surgical Procedures: A Systematic Literature Review. Med. Dev. 2021;14:155–163. doi: 10.2147/MDER.S298207. PubMed DOI PMC

Schimmer C., Gross J., Ramm E., Morfeld B.-C., Hoffmann G., Panholzer B., Hedderich J., Leyh R., Cremer J., Petzina R. Prevention of surgical site sternal infections in cardiac surgery: A two-centre prospective randomized controlled study. Eur. J. Cardio-Thoracic Surg. 2016;51:67–72. doi: 10.1093/ejcts/ezw225. PubMed DOI

Jones K., Williams C., Yuan T., Bs A.M.D.-F., Bs R.C.W., Burton T., Hamlin N., Martinez L. Comparative in vitro study of commercially available products for alveolar ridge preservation. J. Periodontol. 2021;93:403–411. doi: 10.1002/JPER.21-0087. PubMed DOI

Ruszczak Z. Effect of collagen matrices on dermal wound healing. Adv. Drug Deliv. Rev. 2003;55:1595–1611. doi: 10.1016/j.addr.2003.08.003. PubMed DOI

Chia C.L.K., Shelat V.G., Low W., George S., Rao J. The Use of Collatamp G, Local Gentamicin-Collagen Sponge, in Reducing Wound Infection. Int. Surg. 2014;99:565–570. doi: 10.9738/INTSURG-D-13-00171.1. PubMed DOI PMC

Santhanam R., Rameli M.A.P., Al Jeffri A., Ismail W.I.W. Bovine Based Collagen Dressings in Wound Care Management. J. Pharm. Res. Int. 2020;32:48–63. doi: 10.9734/jpri/2020/v32i3330949. DOI

Koehler J., Brandl F.P., Goepferich A.M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 2018;100:1–11. doi: 10.1016/j.eurpolymj.2017.12.046. DOI

Moura L.I.F., Dias A.M.A., Carvalho E., de Sousa H.C. Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review. Acta Biomater. 2013;9:7093–7114. doi: 10.1016/j.actbio.2013.03.033. PubMed DOI

Karr J.C., Taddei A.R., Picchietti S., Gambellini G., Fausto A.M., Giorgi F. A Morphological and Biochemical Analysis Comparative Study of the Collagen Products Biopad, Promogram, Puracol, and Colactive. Adv. Ski. Wound Care. 2011;24:208–216. doi: 10.1097/01.ASW.0000397897.18003.ce. PubMed DOI

Lo S., Fauzi M. Current Update of Collagen Nanomaterials—Fabrication, Characterisation and Its Applications: A Review. Pharmaceutics. 2021;13:316. doi: 10.3390/pharmaceutics13030316. PubMed DOI PMC

Kaur J. Osteo-odonto keratoprosthesis: Innovative dental and ophthalmic blending. J. Indian Prosthodont. Soc. 2018;18:89–95. doi: 10.4103/jips.jips_283_17. PubMed DOI PMC

Matthyssen S., Van den Bogerd B., Dhubhghaill S.N., Koppen C., Zakaria N. Corneal regeneration: A review of stromal replacements. Acta Biomater. 2018;69:31–41. doi: 10.1016/j.actbio.2018.01.023. PubMed DOI

Polisetti N., Islam M.M., Griffith M. The Artificial Cornea. Corneal Regen. Med. 2013;1014:45–52. doi: 10.1007/978-1-62703-432-6_2. PubMed DOI

Simpson F.C., McTiernan C.D., Islam M.M., Buznyk O., Lewis P.N., Meek K.M., Haagdorens M., Audiger C., Lesage S., Gueriot F.-X., et al. Collagen analogs with phosphorylcholine are inflammation-suppressing scaffolds for corneal regeneration from alkali burns in mini-pigs. Commun. Biol. 2021;4:608. doi: 10.1038/s42003-021-02108-y. PubMed DOI PMC

Yang Y., Zhang Y., Yan Y., Ji Q., Dai Y., Jin S., Liu Y., Chen J., Teng L. A Sponge-Like Double-Layer Wound Dressing with Chitosan and Decellularized Bovine Amniotic Membrane for Promoting Diabetic Wound Healing. Polymers. 2020;12:535. doi: 10.3390/polym12030535. PubMed DOI PMC

Cheng X., Shao Z., Li C., Yu L., Raja M.A., Liu C. Isolation, Characterization and Evaluation of Collagen from Jellyfish Rhopilema esculentum Kishinouye for Use in Hemostatic Applications. PLoS ONE. 2017;12:e0169731. doi: 10.1371/journal.pone.0169731. PubMed DOI PMC

He Y., Wang J., Si Y., Wang X., Deng H., Sheng Z., Li Y., Liu J., Zhao J. A novel gene recombinant collagen hemostatic sponge with excellent biocompatibility and hemostatic effect. Int. J. Biol. Macromol. 2021;178:296–305. doi: 10.1016/j.ijbiomac.2021.02.162. PubMed DOI

Sorushanova A., Skoufos I., Tzora A., Mullen A.M., Zeugolis D.I. The influence of animal species, gender and tissue on the structural, biophysical, biochemical and biological properties of collagen sponges. J. Mater. Sci. Mater. Med. 2021;32:12. doi: 10.1007/s10856-020-06485-4. PubMed DOI PMC

Boyce S.T., Christianson D.J., Hansbrough J.F. Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes. J. Biomed. Mater. Res. 1988;22:939–957. doi: 10.1002/jbm.820221008. PubMed DOI

Pozzolini M., Gallus L., Ghignone S., Ferrando S., Candiani S., Bozzo M., Bertolino M., Costa G., Bavestrello G., Scarfì S. Insights into the evolution of metazoan regenerative mechanisms: TGF superfamily member roles in tissue regeneration of the marine sponge Chondrosia reniformis Nardo, 1847. J. Exp. Biol. 2019;222 doi: 10.1242/jeb.207894. PubMed DOI

Chang P., Guo B., Hui Q., Liu X., Tao K. A bioartificial dermal regeneration template promotes skin cell proliferation in vitro and enhances large skin wound healing in vivo. Oncotarget. 2017;8:25226–25241. doi: 10.18632/oncotarget.16005. PubMed DOI PMC

Jinno C., Morimoto N., Ito R., Sakamoto M., Ogino S., Taira T., Suzuki S. A Comparison of Conventional Collagen Sponge and Collagen-Gelatin Sponge in Wound Healing. BioMed Res. Int. 2016;2016:4567146. doi: 10.1155/2016/4567146. PubMed DOI PMC

Borene M.L., Barocas V.H., Hubel A. Mechanical and cellular changes during compaction of a collagen-sponge-based corneal stromal equivalent. Ann. Biomed. Eng. 2004;32:274–283. doi: 10.1023/B:ABME.0000012747.97620.3a. PubMed DOI

Orwin E.J., Hubel A. In Vitro Culture Characteristics of Corneal Epithelial, Endothelial, and Keratocyte Cells in a Native Collagen Matrix. Tissue Eng. 2000;6:307–319. doi: 10.1089/107632700418038. PubMed DOI

Aswathy S., Narendrakumar U., Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6:e03719. doi: 10.1016/j.heliyon.2020.e03719. PubMed DOI PMC

Correa S., Grosskopf A.K., Hernandez H.L., Chan D., Yu A.C., Stapleton L.M., Appel E.A. Translational Applications of Hydrogels. Chem. Rev. 2021;121:11385–11457. doi: 10.1021/acs.chemrev.0c01177. PubMed DOI PMC

Mude L., Sanapalli B.K.R., Narayanan A., Singh S.K., Karri V.V.S.R. Overview of in situ gelling injectable hydrogels for diabetic wounds. Drug Dev. Res. 2021;82:503–522. doi: 10.1002/ddr.21788. PubMed DOI

Bonnesœur S., Morin-Grognet S., Thoumire O., Le Cerf D., Boyer O., Vannier J., Labat B. Hyaluronan-based hydrogels as versatile tumor-like models: Tunable ECM and stiffness with genipin-crosslinking. J. Biomed. Mater. Res. Part A. 2020;108:1256–1268. doi: 10.1002/jbm.a.36899. PubMed DOI

Ying H., Zhou J., Wang M., Su D., Ma Q., Lv G., Chen J. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater. Sci. Eng. C. 2019;101:487–498. doi: 10.1016/j.msec.2019.03.093. PubMed DOI

Tripathi D., Sharma A., Tyagi P., Beniwal C.S., Mittal G., Jamini A., Singh H., Tyagi A. Fabrication of Three-Dimensional Bioactive Composite Scaffolds for Hemostasis and Wound Healing. AAPS PharmSciTech. 2021;22:138. doi: 10.1208/s12249-021-02010-0. PubMed DOI

Liu L., Wen H., Rao Z., Zhu C., Liu M., Min L., Fan L., Tao S. Preparation and characterization of chitosan–collagen peptide/oxidized konjac glucomannan hydrogel. Int. J. Biol. Macromol. 2018;108:376–382. doi: 10.1016/j.ijbiomac.2017.11.128. PubMed DOI

Tripathi D., Rastogi K., Tyagi P., Rawat H., Mittal G., Jamini A., Singh H., Tyagi A. Comparative Analysis of Collagen and Chitosan-based Dressing for Haemostatic and Wound Healing Application. AAPS PharmSciTech. 2021;22:76. doi: 10.1208/s12249-021-01944-9. PubMed DOI

Ding C., Tian M., Feng R., Dang Y., Zhang M. Novel Self-Healing Hydrogel with Injectable, pH-Responsive, Strain-Sensitive, Promoting Wound-Healing, and Hemostatic Properties Based on Collagen and Chitosan. ACS Biomater. Sci. Eng. 2020;6:3855–3867. doi: 10.1021/acsbiomaterials.0c00588. PubMed DOI

Deng A., Yang Y., Du S., Yang X., Pang S., Wang X., Yang S. Preparation of a recombinant collagen-peptide (RHC)-conjugated chitosan thermosensitive hydrogel for wound healing. Mater. Sci. Eng. C. 2020;119:111555. doi: 10.1016/j.msec.2020.111555. PubMed DOI

Meuli M., Hartmann-Fritsch F., Hüging M., Marino D., Saglini M., Hynes S., Neuhaus K., Manuel E., Middelkoop E., Reichmann E., et al. A Cultured Autologous Dermo-epidermal Skin Substitute for Full-Thickness Skin Defects: A Phase I, Open, Prospective Clinical Trial in Children. Plast. Reconstr. Surg. 2019;144:188–198. doi: 10.1097/PRS.0000000000005746. PubMed DOI

Dearman B.L., Boyce S.T., Greenwood J.E. Advances in Skin Tissue Bioengineering and the Challenges of Clinical Translation. Front. Surg. 2021;8:640879. doi: 10.3389/fsurg.2021.640879. PubMed DOI PMC

Lynch C.R., Kondiah P.P.D., Choonara Y.E., Du Toit L.C., Ally N., Pillay V. Hydrogel Biomaterials for Application in Ocular Drug Delivery. Front. Bioeng. Biotechnol. 2020;8:228. doi: 10.3389/fbioe.2020.00228. PubMed DOI PMC

Xeroudaki M., Thangavelu M., Lennikov A., Ratnayake A., Bisevac J., Petrovski G., Fagerholm P., Rafat M., Lagali N. A porous collagen-based hydrogel and implantation method for corneal stromal regeneration and sustained local drug delivery. Sci. Rep. 2020;10:16936. doi: 10.1038/s41598-020-73730-9. PubMed DOI PMC

McCoy M.G., Seo B.R., Choi S., Fischbach C. Collagen I hydrogel microstructure and composition conjointly regulate vascular network formation. Acta Biomater. 2016;44:200–208. doi: 10.1016/j.actbio.2016.08.028. PubMed DOI PMC

Goodarzi H., Jadidi K., Pourmotabed S., Sharifi E., Aghamollaei H. Preparation and in vitro characterization of cross-linked collagen–gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int. J. Biol. Macromol. 2018;126:620–632. doi: 10.1016/j.ijbiomac.2018.12.125. PubMed DOI

Chen Z., You J., Liu X., Cooper S., Hodge C., Sutton G., Crook J.M., Wallace G.G. Biomaterials for corneal bioengineering. Biomed. Mater. 2018;13:032002. doi: 10.1088/1748-605X/aa92d2. PubMed DOI

Jangamreddy J.R., Haagdorens M.K., Islam M.M., Lewis P., Samanta A., Fagerholm P., Liszka A., Ljunggren M.K., Buznyk O., Alarcon E.I., et al. Short peptide analogs as alternatives to collagen in pro-regenerative corneal implants. Acta Biomater. 2018;69:120–130. doi: 10.1016/j.actbio.2018.01.011. PubMed DOI PMC

Islam M.M., Ravichandran R., Olsen D., Ljunggren M.K., Fagerholm P., Lee C.J., Griffith M., Phopase J. Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation. RSC Adv. 2016;6:55745–55749. doi: 10.1039/C6RA08895C. DOI

Fernandes-Cunha G.M., Chen K.M., Chen F., Le P., Han J.H., Mahajan L.A., Lee H.J., Na K.S., Myung D. In situ-forming collagen hydrogel crosslinked via multi-functional PEG as a matrix therapy for corneal defects. Sci. Rep. 2020;10:16671. doi: 10.1038/s41598-020-72978-5. PubMed DOI PMC

Na K.-S., Fernandes-Cunha G.M., Varela I.B., Lee H.J., Seo Y.A., Myung D. Effect of mesenchymal stromal cells encapsulated within polyethylene glycol-collagen hydrogels formed in situ on alkali-burned corneas in an ex vivo organ culture model. Cytotherapy. 2021;23:500–509. doi: 10.1016/j.jcyt.2021.02.001. PubMed DOI PMC

Islam M.M., Cėpla V., He C., Edin J., Rakickas T., Kobuch K., Ruželė Z., Jackson W.B., Rafat M., Lohmann C.P., et al. Functional fabrication of recombinant human collagen–phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomater. 2015;12:70–80. doi: 10.1016/j.actbio.2014.10.035. PubMed DOI

Mullins R., Richards C., Walker T. Allergic reactions to oral, surgical and topical bovine collagen: Anaphylactic risk for surgeons. Aust. New Zealand J. Ophthalmol. 1996;24:257–260. doi: 10.1111/j.1442-9071.1996.tb01589.x. PubMed DOI

Pekar J.E., Magee A., Parker E., Moshiri N., Izhikevich K., Havens J.L., Gangavarapu K., Serrano L.M.M., Crits-Christoph A., Matteson N.L., et al. The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science. 2022;377:960–966. doi: 10.1126/science.abp8337. PubMed DOI PMC

Sbricoli L., Guazzo R., Annunziata M., Gobbato L., Bressan E., Nastri L. Selection of Collagen Membranes for Bone Regeneration: A Literature Review. Materials. 2020;13:786. doi: 10.3390/ma13030786. PubMed DOI PMC

Kaczmarek B., Mazur O. Collagen-Based Materials Modified by Phenolic Acids—A Review. Materials. 2020;13:3641. doi: 10.3390/ma13163641. PubMed DOI PMC

Shah R., Stodulka P., Skopalova K., Saha P. Dual Crosslinked Collagen/Chitosan Film for Potential Biomedical Applications. Polymers. 2019;11:2094. doi: 10.3390/polym11122094. PubMed DOI PMC

Socrates R., Prymak O., Loza K., Sakthivel N., Rajaram A., Epple M., Kalkura S.N. Biomimetic fabrication of mineralized composite films of nanosilver loaded native fibrillar collagen and chitosan. Mater. Sci. Eng. C. 2019;99:357–366. doi: 10.1016/j.msec.2019.01.101. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Materials Suitable for Osteochondral Regeneration

. 2024 Jul 16 ; 9 (28) : 30097-30108. [epub] 20240702

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...