Dual Crosslinked Collagen/Chitosan Film for Potential Biomedical Applications
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
31847318
PubMed Central
PMC6960699
DOI
10.3390/polym11122094
PII: polym11122094
Knihovny.cz E-resources
- Keywords
- chitosan, collagen, dual crosslinking, polymeric biomaterial,
- Publication type
- Journal Article MeSH
The application of polymeric biomaterial scaffolds utilizing crosslinking strategy has become an effective approach in these days. In the present study, the development and characterization of collagen-chitosan hydrogel film has been reported on using dual crosslinking agent's, i.e., tannic acid and genipin simultaneously. Incorporation of genipin imparts a greenish-blue color to the polymeric film. The effect of dual crosslinking and their successful interaction within the matrix was evaluated by infrared analysis spectroscopy. The porosity of the film was examined using scanning electron microscopy (SEM). Results of TGA determine the intermediate thermal degradation. Further, the crosslinking phenomenon has found primary impact on the strength of the films. Enzymatic degradation for the films was performed with lysozyme and lipase. The cell adhesion and proliferation was also accomplished using mouse embryonic cell lines wherein the cells cultured on the dual crosslinked film. The thriving utilization of such dual crosslinked polymeric film finds their applications in ophthalmology especially as an implant for temporary injured cornea and skin tissue regeneration.
See more in PubMed
Fiejdasz S., Szczubiałka K., Lewandowska-Lancucka J., Osyczka A.M., Nowakowska M. Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds. Biomed. Mater. 2013;8:035013. doi: 10.1088/1748-6041/8/3/035013. PubMed DOI
Kuo Y.C., Ku H.F., Rajesh R. Chitosan/γ-poly(glutamic acid) scaffolds with surface-modified albumin, elastin and poly-L-lysine for cartilage tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. C. 2017;78:265–277. doi: 10.1016/j.msec.2017.04.067. PubMed DOI
Ma P.X. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 2008;60:184–198. doi: 10.1016/j.addr.2007.08.041. PubMed DOI PMC
Liu H., Slamovich E.B., Webster T.J. Less harmful acidic degradation of poly(lactic-coglycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int. J. Nanomed. 2006;1:541–545. doi: 10.2147/nano.2006.1.4.541. PubMed DOI PMC
Yamane S., Iwasaki N., Majima T., Funakoshi T., Masuko T., Harad K., Minami A., Monde K., Nishimura S.-h. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials. 2005;26:611–619. doi: 10.1016/j.biomaterials.2004.03.013. PubMed DOI
Han J., Zhou Z.Y., Yin R.X., Yang D.Z., Nie J. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization. Int. J. Biol. Macromol. 2010;46:199–205. doi: 10.1016/j.ijbiomac.2009.11.004. PubMed DOI
Sionkowska A., Kaczmarek B., Lewandowska K. Modification of collagen and chitosan mixtures by the addition of tannic acid. J. Mol. Liq. 2014;199:318–323. doi: 10.1016/j.molliq.2014.09.028. DOI
Lee C.H., Singla A., Lee Y. Biomedical applications of collagen. Int. J. Pharm. 2001;221:1–22. doi: 10.1016/S0378-5173(01)00691-3. PubMed DOI
Krki N., Lazi V., Petrovi L., Gvozdenovi J., Peji D. Properties of Chitosan-Laminated Collagen Film. Food Technol. Biotechnology. 2012;50:483–489.
Liu H., Zhao L., Guo S., Xia Y., Zhou P. Modification of fish skin collagen film and absorption property of tannic acid. J. Food Sci. Technol. 2014;51:1102–1109. doi: 10.1007/s13197-011-0599-2. PubMed DOI PMC
Yan L., Wang Y., Ren L., Wu G., Caridade S.G., Fan J., Wang L., Ji P., Oliveira J.M., Oliveira J.T., et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J. Biomed. Mater. Res. A. 2010;95A:466–475. doi: 10.1002/jbm.a.32869. PubMed DOI
Yeh J.T., Chen C.L., Huang K.S., Nien Y.H., Chen J.L., Huang P.Z. Synthesis, Characterization, and Application of PVP/Chitosan Blended Polymers. J. Appl. Polym. Sci. 2006;101:885–891. doi: 10.1002/app.23517. DOI
Lewandowska K. Miscibility and interactions in chitosan acetate/poly (N-vinylpyrrolidone) blends. Thermochim. Acta. 2011;517:90–97. doi: 10.1016/j.tca.2011.01.036. DOI
Nwe N., Furuike T., Tamura H. The Mechanical and Biological Properties of Chitosan Scaffolds for Tissue Regeneration Templates Are Significantly Enhanced by Chitosan from Gongronella butleri. Materials. 2009;2:374–398. doi: 10.3390/ma2020374. DOI
Chaiyasan W., Srinivas S.P., Tiyabooncha W. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol. Vis. 2015;21:1224–1234. PubMed PMC
Seol Y.-J., Lee J.-Y., Park Y.-J., Lee Y.-M., Ku Y., Rhyu I.-C., Lee S.-J., Han S.-B., Chung C.-P. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol. Lett. 2004;26:1037–1041. doi: 10.1023/B:BILE.0000032962.79531.fd. PubMed DOI
Tachibana M., Yaita A., Taniura H., Fukasawa K., Nagasue N., Nakamura. T. The use of chitin as a new absorbable suture material-an experimental study. Jpn. J. Surg. 1988;18:533–539. doi: 10.1007/BF02471487. PubMed DOI
Bergera J., Reista M., Mayera J.M., Feltb O., Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 2004;57:35–52. doi: 10.1016/S0939-6411(03)00160-7. PubMed DOI
Mane S., Ponrathnam S., Chavan N. Effect of Chemical Cross-linking on Properties of Polymer Microbeads: A Review canchemtrans. Can. Chem. Trans. 2015;3:473–485.
Maitra J., Shukla V.K. Cross-linking in Hydrogels—A Review. Am. J. Appl. Polym. Sci. 2014;4:25–31.
Chiono V., Pulieri E., Vozzi G., Ciardelli G., Ahluwalia A., Giusti P. Genipin-crosslinked chitosan/gelatin blends for biomedical Applications. J. Mater. Sci. Mater. Med. 2008;19:889–898. doi: 10.1007/s10856-007-3212-5. PubMed DOI
Sahiner M., Sagbas S., Bitlisli B.O. p(AAm/TA)-based IPN hydrogel films with antimicrobial and antioxidant properties for biomedical applications. J. Appl. Polym. Sci. 2015;132:41876.
Sionkowska A., Kaczmarek B., Gnatowska M., Kowalonek J. The influence of UV-irradiation on chitosan modified by the tannic acid addition. J. Photochem. Photobiol. B Biol. 2015;148:333–339. doi: 10.1016/j.jphotobiol.2015.03.028. PubMed DOI
Cheryl P. Master’s Thesis. Clemson University; Clemson, South Carolina: 2006. Tannic Acid Crosslinked Collagens and Potential for Breast Tissue Engineering.
Muzzarelli R.A.A., Mehtedi M.E., Bottegoni C., Aquili A., Gigante A. Genipin-Crosslinked Chitosan Gels and Scaffolds for Tissue Engineering and Regeneration of Cartilage and Bone. Mar. Drugs. 2015;13:7314–7338. doi: 10.3390/md13127068. PubMed DOI PMC
Matcham S., Novakovic K. Fluorescence Imaging in Genipin Crosslinked Chitosan–Poly (vinyl pyrrolidone) Hydrogels. Polymers. 2016;8:385. doi: 10.3390/polym8110385. PubMed DOI PMC
Manickam B., Sreedharan R., Elumalai M. ‘Genipin’—The Natural Water Soluble Cross-linking Agent and Its Importance in the Modified Drug Delivery Systems: An Overview. Curr. Drug Deliv. 2014;11:139–145. doi: 10.2174/15672018113106660059. PubMed DOI
Sundararaghavan H.G., Monteiro G.A., Lapin N.A., Chabal Y.J., Miksan J.R., Shreiber D.I. Genipin-induced changes in collagen gels: Correlation of mechanical properties to fluorescence. J. Biomed. Mater. Res. Part A. 2008;87:308–320. doi: 10.1002/jbm.a.31715. PubMed DOI
Lai J.Y. Biocompatibility of Genipin and Glutaraldehyde Cross-Linked Chitosan Materials in the Anterior Chamber of the Eye. Int. J. Mol. Sci. 2012;13:10970–10985. doi: 10.3390/ijms130910970. PubMed DOI PMC
Lai J.Y., Li Y.T., Wang T.P. In vitro response of retinal pigment epithelial cells exposed to chitosan materials prepared with different cross-linkers. Int. J. Mol. Sci. 2010;11:5256–5272. doi: 10.3390/ijms11125256. PubMed DOI PMC
Mi F.L., Tan Y.C., Liang H.F., Sung H.W. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials. 2002;23:181–191. doi: 10.1016/S0142-9612(01)00094-1. PubMed DOI
Grolik M., Szczubiałka K., Wowra B., Dobrowolski D., Orzechowska-Wylęgała B., Wylęgała E., Nowakowska M. Hydrogel membranes based on genipin-cross-linked chitosan blends for corneal epithelium tissue engineering. J. Mater. Sci. Mater. Med. 2012;23:1991–2000. doi: 10.1007/s10856-012-4666-7. PubMed DOI PMC
Bi L., Cao Z., Hu Y., Song Y., Yu L., Yang B., Mu J., Huang Z., Han Y. Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering. J. Mater. Sci. Mater. Med. 2011;22:51–62. doi: 10.1007/s10856-010-4177-3. PubMed DOI
Shah R., Saha N., Kuceková Z., Humpolicek P., Saha P. Properties of biomineralized (CaCO3) PVP-CMC hydrogel with reference to its cytotoxicity. Int. J. Polym. Mater. 2016;65:619–628. doi: 10.1080/00914037.2016.1157793. DOI
Fathi M., Entezami A.A., Pashaei-Asl R. Swelling/deswelling, thermal, and rheological behavior of PVA-g-NIPAAm nanohydrogels prepared by a facile free-radical polymerization method. J. Polym. Res. 2013;20:125. doi: 10.1007/s10965-013-0125-5. DOI
Costa-Pinto A.R., Martins A.M., Castelhano-Carlos M.J., Correlo V.M., Sol P., Longatto-Filho A., Battacharya M., Reis R.L., Neves N.M. In vitro degradation and in vivo biocompatibility of chitosan–poly (butylene succinate) fiber mesh scaffolds. J. Bioact. Compat. Polym. 2014;29:137–151. doi: 10.1177/0883911514521919. DOI
Rejmontová P., Capáková Z., Mikušová N., Maráková N., Kašpárková V., Lehocký M., Humpolíček P. Adhesion, proliferation and migration of NIH/3T3 cells on modified polyaniline surfaces. Int. J. Mol. Sci. 2016;17:1439. doi: 10.3390/ijms17091439. PubMed DOI PMC
Fernandes L.L., Resende C.X., Tavares D.S., Soares G.A. Cytocompatibility of Chitosan and Collagen-Chitosan Scaffolds for Tissue Engineering. Polímeros. 2011;21:1–6. doi: 10.1590/S0104-14282011005000008. DOI
Natarajan V., Krithica N., Madhan B., Sehgal P.K. Preparation and properties of tannic acid cross-linkedcollagen scaffold and its application in wound healing. Pt BJ. Biomed. Mater. Res. B Appl. Biomater. 2013;101:560–567. doi: 10.1002/jbm.b.32856. PubMed DOI
Dimida S., Demitri C., Benedictis V.M.D., Scalera F., Gervaso F., Sannino A. Genipin-cross-linked chitosan-based hydrogels: Reaction kinetics and structure-related characteristics. J. Appl. Polym. Sci. 2015;132:42256. doi: 10.1002/app.42256. DOI
Klein M.P., Hackenhaar C.R., Lorenzoni A.S.G., Rodrigues R.C., Costa T.M.H., Ninow J.L., Hertz P.F. Chitosan crosslinked with genipin as support matrix for application in food process: Support characterization and B-d-galactosidase immobilization. Carbohydr. Polym. 2016;137:184–190. doi: 10.1016/j.carbpol.2015.10.069. PubMed DOI
Dimida S., Barca A., Cancelli N., de Benedictis V., Raucci M.G., Demitri C. Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features. Int. J. Polym. Sci. 2017;2017:8410750. doi: 10.1155/2017/8410750. DOI
Mayra A.P.C., Horacio G.R. Study by infrared spectroscopy and thermogravimetric analysis of Tannins and Tannic acid. Lat. Am. J. Chem. 2011;39:107–112.
Mirzaei E., Majidi R.F., Shokrgozar M.A., Paskiabi F.A. Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissueengineering scaffold. Nanomed. J. 2014;1:137–146.
Ma L., Gao C.Y., Mao Z.W., Shen J.C., Hu X.Q., Han C.M. Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagen-chitosan porous scaffolds used as dermal equivalent. J. Biomater. Sci. Polym. Ed. 2003;14:861–874. PubMed
Horn M.M., Martins V.C.A., Plepis A.M.G. Interaction of anionic collagen with chitosan: Effect on thermal and morphological characteristics. Carbohydr. Poly. 2009;77:239–243. doi: 10.1016/j.carbpol.2008.12.039. DOI
Rivero S., García M.A., Pinotti A. Physical and Chemical Treatments on Chitosan Matrix to Modify Film Properties and Kinetics of Biodegradation. Mater. Chem. Phys. 2013;1:51–57.
Beppu M.M., Vieira R.S., Aimoli C.G., Santana C.C. Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption. J. Memb. Sci. 2007;301:126–130. doi: 10.1016/j.memsci.2007.06.015. DOI
Peña C., Caba K., Eceiza A., Ruseckaite R., Mondragon I. Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresour. Technol. 2010;101:6836–6842. doi: 10.1016/j.biortech.2010.03.112. PubMed DOI
Sadeghi M., Hosseinzadeh H. Synthesis and super-swelling behavior of a novel low salt-sensitive protein-based superabsorbent hydrogel: Collagen-g-poly(AMPS)H. Turk. J. Chem. 2010;34:739–752.
Hankiewicz J., Swierczek E. Lysozyme in human body fluids. Clin. Chim. Acta. 1974;57:205–209. doi: 10.1016/0009-8981(74)90398-2. PubMed DOI
Ahmadi F., Oveisi Z., Mohammadi Samani S., Amoozgar Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Res. Pharm. Sci. 2015;10:1–16. PubMed PMC
Gao L., Gan H., Meng Z., Gu R., Wu Z., Zhang L., Zhu X., Sun W., Li J., Zheng Y., et al. Effects of genipin cross-linking of chitosan hydrogels on cellularadhesion and viability. Colloids Surf. B Biointerfaces. 2014;117:398–405. doi: 10.1016/j.colsurfb.2014.03.002. PubMed DOI
Collagen as a Biomaterial for Skin and Corneal Wound Healing