• This record comes from PubMed

Dual Crosslinked Collagen/Chitosan Film for Potential Biomedical Applications

. 2019 Dec 14 ; 11 (12) : . [epub] 20191214

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

The application of polymeric biomaterial scaffolds utilizing crosslinking strategy has become an effective approach in these days. In the present study, the development and characterization of collagen-chitosan hydrogel film has been reported on using dual crosslinking agent's, i.e., tannic acid and genipin simultaneously. Incorporation of genipin imparts a greenish-blue color to the polymeric film. The effect of dual crosslinking and their successful interaction within the matrix was evaluated by infrared analysis spectroscopy. The porosity of the film was examined using scanning electron microscopy (SEM). Results of TGA determine the intermediate thermal degradation. Further, the crosslinking phenomenon has found primary impact on the strength of the films. Enzymatic degradation for the films was performed with lysozyme and lipase. The cell adhesion and proliferation was also accomplished using mouse embryonic cell lines wherein the cells cultured on the dual crosslinked film. The thriving utilization of such dual crosslinked polymeric film finds their applications in ophthalmology especially as an implant for temporary injured cornea and skin tissue regeneration.

See more in PubMed

Fiejdasz S., Szczubiałka K., Lewandowska-Lancucka J., Osyczka A.M., Nowakowska M. Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds. Biomed. Mater. 2013;8:035013. doi: 10.1088/1748-6041/8/3/035013. PubMed DOI

Kuo Y.C., Ku H.F., Rajesh R. Chitosan/γ-poly(glutamic acid) scaffolds with surface-modified albumin, elastin and poly-L-lysine for cartilage tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. C. 2017;78:265–277. doi: 10.1016/j.msec.2017.04.067. PubMed DOI

Ma P.X. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 2008;60:184–198. doi: 10.1016/j.addr.2007.08.041. PubMed DOI PMC

Liu H., Slamovich E.B., Webster T.J. Less harmful acidic degradation of poly(lactic-coglycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int. J. Nanomed. 2006;1:541–545. doi: 10.2147/nano.2006.1.4.541. PubMed DOI PMC

Yamane S., Iwasaki N., Majima T., Funakoshi T., Masuko T., Harad K., Minami A., Monde K., Nishimura S.-h. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials. 2005;26:611–619. doi: 10.1016/j.biomaterials.2004.03.013. PubMed DOI

Han J., Zhou Z.Y., Yin R.X., Yang D.Z., Nie J. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization. Int. J. Biol. Macromol. 2010;46:199–205. doi: 10.1016/j.ijbiomac.2009.11.004. PubMed DOI

Sionkowska A., Kaczmarek B., Lewandowska K. Modification of collagen and chitosan mixtures by the addition of tannic acid. J. Mol. Liq. 2014;199:318–323. doi: 10.1016/j.molliq.2014.09.028. DOI

Lee C.H., Singla A., Lee Y. Biomedical applications of collagen. Int. J. Pharm. 2001;221:1–22. doi: 10.1016/S0378-5173(01)00691-3. PubMed DOI

Krki N., Lazi V., Petrovi L., Gvozdenovi J., Peji D. Properties of Chitosan-Laminated Collagen Film. Food Technol. Biotechnology. 2012;50:483–489.

Liu H., Zhao L., Guo S., Xia Y., Zhou P. Modification of fish skin collagen film and absorption property of tannic acid. J. Food Sci. Technol. 2014;51:1102–1109. doi: 10.1007/s13197-011-0599-2. PubMed DOI PMC

Yan L., Wang Y., Ren L., Wu G., Caridade S.G., Fan J., Wang L., Ji P., Oliveira J.M., Oliveira J.T., et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J. Biomed. Mater. Res. A. 2010;95A:466–475. doi: 10.1002/jbm.a.32869. PubMed DOI

Yeh J.T., Chen C.L., Huang K.S., Nien Y.H., Chen J.L., Huang P.Z. Synthesis, Characterization, and Application of PVP/Chitosan Blended Polymers. J. Appl. Polym. Sci. 2006;101:885–891. doi: 10.1002/app.23517. DOI

Lewandowska K. Miscibility and interactions in chitosan acetate/poly (N-vinylpyrrolidone) blends. Thermochim. Acta. 2011;517:90–97. doi: 10.1016/j.tca.2011.01.036. DOI

Nwe N., Furuike T., Tamura H. The Mechanical and Biological Properties of Chitosan Scaffolds for Tissue Regeneration Templates Are Significantly Enhanced by Chitosan from Gongronella butleri. Materials. 2009;2:374–398. doi: 10.3390/ma2020374. DOI

Chaiyasan W., Srinivas S.P., Tiyabooncha W. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol. Vis. 2015;21:1224–1234. PubMed PMC

Seol Y.-J., Lee J.-Y., Park Y.-J., Lee Y.-M., Ku Y., Rhyu I.-C., Lee S.-J., Han S.-B., Chung C.-P. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol. Lett. 2004;26:1037–1041. doi: 10.1023/B:BILE.0000032962.79531.fd. PubMed DOI

Tachibana M., Yaita A., Taniura H., Fukasawa K., Nagasue N., Nakamura. T. The use of chitin as a new absorbable suture material-an experimental study. Jpn. J. Surg. 1988;18:533–539. doi: 10.1007/BF02471487. PubMed DOI

Bergera J., Reista M., Mayera J.M., Feltb O., Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 2004;57:35–52. doi: 10.1016/S0939-6411(03)00160-7. PubMed DOI

Mane S., Ponrathnam S., Chavan N. Effect of Chemical Cross-linking on Properties of Polymer Microbeads: A Review canchemtrans. Can. Chem. Trans. 2015;3:473–485.

Maitra J., Shukla V.K. Cross-linking in Hydrogels—A Review. Am. J. Appl. Polym. Sci. 2014;4:25–31.

Chiono V., Pulieri E., Vozzi G., Ciardelli G., Ahluwalia A., Giusti P. Genipin-crosslinked chitosan/gelatin blends for biomedical Applications. J. Mater. Sci. Mater. Med. 2008;19:889–898. doi: 10.1007/s10856-007-3212-5. PubMed DOI

Sahiner M., Sagbas S., Bitlisli B.O. p(AAm/TA)-based IPN hydrogel films with antimicrobial and antioxidant properties for biomedical applications. J. Appl. Polym. Sci. 2015;132:41876.

Sionkowska A., Kaczmarek B., Gnatowska M., Kowalonek J. The influence of UV-irradiation on chitosan modified by the tannic acid addition. J. Photochem. Photobiol. B Biol. 2015;148:333–339. doi: 10.1016/j.jphotobiol.2015.03.028. PubMed DOI

Cheryl P. Master’s Thesis. Clemson University; Clemson, South Carolina: 2006. Tannic Acid Crosslinked Collagens and Potential for Breast Tissue Engineering.

Muzzarelli R.A.A., Mehtedi M.E., Bottegoni C., Aquili A., Gigante A. Genipin-Crosslinked Chitosan Gels and Scaffolds for Tissue Engineering and Regeneration of Cartilage and Bone. Mar. Drugs. 2015;13:7314–7338. doi: 10.3390/md13127068. PubMed DOI PMC

Matcham S., Novakovic K. Fluorescence Imaging in Genipin Crosslinked Chitosan–Poly (vinyl pyrrolidone) Hydrogels. Polymers. 2016;8:385. doi: 10.3390/polym8110385. PubMed DOI PMC

Manickam B., Sreedharan R., Elumalai M. ‘Genipin’—The Natural Water Soluble Cross-linking Agent and Its Importance in the Modified Drug Delivery Systems: An Overview. Curr. Drug Deliv. 2014;11:139–145. doi: 10.2174/15672018113106660059. PubMed DOI

Sundararaghavan H.G., Monteiro G.A., Lapin N.A., Chabal Y.J., Miksan J.R., Shreiber D.I. Genipin-induced changes in collagen gels: Correlation of mechanical properties to fluorescence. J. Biomed. Mater. Res. Part A. 2008;87:308–320. doi: 10.1002/jbm.a.31715. PubMed DOI

Lai J.Y. Biocompatibility of Genipin and Glutaraldehyde Cross-Linked Chitosan Materials in the Anterior Chamber of the Eye. Int. J. Mol. Sci. 2012;13:10970–10985. doi: 10.3390/ijms130910970. PubMed DOI PMC

Lai J.Y., Li Y.T., Wang T.P. In vitro response of retinal pigment epithelial cells exposed to chitosan materials prepared with different cross-linkers. Int. J. Mol. Sci. 2010;11:5256–5272. doi: 10.3390/ijms11125256. PubMed DOI PMC

Mi F.L., Tan Y.C., Liang H.F., Sung H.W. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials. 2002;23:181–191. doi: 10.1016/S0142-9612(01)00094-1. PubMed DOI

Grolik M., Szczubiałka K., Wowra B., Dobrowolski D., Orzechowska-Wylęgała B., Wylęgała E., Nowakowska M. Hydrogel membranes based on genipin-cross-linked chitosan blends for corneal epithelium tissue engineering. J. Mater. Sci. Mater. Med. 2012;23:1991–2000. doi: 10.1007/s10856-012-4666-7. PubMed DOI PMC

Bi L., Cao Z., Hu Y., Song Y., Yu L., Yang B., Mu J., Huang Z., Han Y. Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering. J. Mater. Sci. Mater. Med. 2011;22:51–62. doi: 10.1007/s10856-010-4177-3. PubMed DOI

Shah R., Saha N., Kuceková Z., Humpolicek P., Saha P. Properties of biomineralized (CaCO3) PVP-CMC hydrogel with reference to its cytotoxicity. Int. J. Polym. Mater. 2016;65:619–628. doi: 10.1080/00914037.2016.1157793. DOI

Fathi M., Entezami A.A., Pashaei-Asl R. Swelling/deswelling, thermal, and rheological behavior of PVA-g-NIPAAm nanohydrogels prepared by a facile free-radical polymerization method. J. Polym. Res. 2013;20:125. doi: 10.1007/s10965-013-0125-5. DOI

Costa-Pinto A.R., Martins A.M., Castelhano-Carlos M.J., Correlo V.M., Sol P., Longatto-Filho A., Battacharya M., Reis R.L., Neves N.M. In vitro degradation and in vivo biocompatibility of chitosan–poly (butylene succinate) fiber mesh scaffolds. J. Bioact. Compat. Polym. 2014;29:137–151. doi: 10.1177/0883911514521919. DOI

Rejmontová P., Capáková Z., Mikušová N., Maráková N., Kašpárková V., Lehocký M., Humpolíček P. Adhesion, proliferation and migration of NIH/3T3 cells on modified polyaniline surfaces. Int. J. Mol. Sci. 2016;17:1439. doi: 10.3390/ijms17091439. PubMed DOI PMC

Fernandes L.L., Resende C.X., Tavares D.S., Soares G.A. Cytocompatibility of Chitosan and Collagen-Chitosan Scaffolds for Tissue Engineering. Polímeros. 2011;21:1–6. doi: 10.1590/S0104-14282011005000008. DOI

Natarajan V., Krithica N., Madhan B., Sehgal P.K. Preparation and properties of tannic acid cross-linkedcollagen scaffold and its application in wound healing. Pt BJ. Biomed. Mater. Res. B Appl. Biomater. 2013;101:560–567. doi: 10.1002/jbm.b.32856. PubMed DOI

Dimida S., Demitri C., Benedictis V.M.D., Scalera F., Gervaso F., Sannino A. Genipin-cross-linked chitosan-based hydrogels: Reaction kinetics and structure-related characteristics. J. Appl. Polym. Sci. 2015;132:42256. doi: 10.1002/app.42256. DOI

Klein M.P., Hackenhaar C.R., Lorenzoni A.S.G., Rodrigues R.C., Costa T.M.H., Ninow J.L., Hertz P.F. Chitosan crosslinked with genipin as support matrix for application in food process: Support characterization and B-d-galactosidase immobilization. Carbohydr. Polym. 2016;137:184–190. doi: 10.1016/j.carbpol.2015.10.069. PubMed DOI

Dimida S., Barca A., Cancelli N., de Benedictis V., Raucci M.G., Demitri C. Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features. Int. J. Polym. Sci. 2017;2017:8410750. doi: 10.1155/2017/8410750. DOI

Mayra A.P.C., Horacio G.R. Study by infrared spectroscopy and thermogravimetric analysis of Tannins and Tannic acid. Lat. Am. J. Chem. 2011;39:107–112.

Mirzaei E., Majidi R.F., Shokrgozar M.A., Paskiabi F.A. Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissueengineering scaffold. Nanomed. J. 2014;1:137–146.

Ma L., Gao C.Y., Mao Z.W., Shen J.C., Hu X.Q., Han C.M. Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagen-chitosan porous scaffolds used as dermal equivalent. J. Biomater. Sci. Polym. Ed. 2003;14:861–874. PubMed

Horn M.M., Martins V.C.A., Plepis A.M.G. Interaction of anionic collagen with chitosan: Effect on thermal and morphological characteristics. Carbohydr. Poly. 2009;77:239–243. doi: 10.1016/j.carbpol.2008.12.039. DOI

Rivero S., García M.A., Pinotti A. Physical and Chemical Treatments on Chitosan Matrix to Modify Film Properties and Kinetics of Biodegradation. Mater. Chem. Phys. 2013;1:51–57.

Beppu M.M., Vieira R.S., Aimoli C.G., Santana C.C. Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption. J. Memb. Sci. 2007;301:126–130. doi: 10.1016/j.memsci.2007.06.015. DOI

Peña C., Caba K., Eceiza A., Ruseckaite R., Mondragon I. Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresour. Technol. 2010;101:6836–6842. doi: 10.1016/j.biortech.2010.03.112. PubMed DOI

Sadeghi M., Hosseinzadeh H. Synthesis and super-swelling behavior of a novel low salt-sensitive protein-based superabsorbent hydrogel: Collagen-g-poly(AMPS)H. Turk. J. Chem. 2010;34:739–752.

Hankiewicz J., Swierczek E. Lysozyme in human body fluids. Clin. Chim. Acta. 1974;57:205–209. doi: 10.1016/0009-8981(74)90398-2. PubMed DOI

Ahmadi F., Oveisi Z., Mohammadi Samani S., Amoozgar Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Res. Pharm. Sci. 2015;10:1–16. PubMed PMC

Gao L., Gan H., Meng Z., Gu R., Wu Z., Zhang L., Zhu X., Sun W., Li J., Zheng Y., et al. Effects of genipin cross-linking of chitosan hydrogels on cellularadhesion and viability. Colloids Surf. B Biointerfaces. 2014;117:398–405. doi: 10.1016/j.colsurfb.2014.03.002. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Collagen as a Biomaterial for Skin and Corneal Wound Healing

. 2022 Nov 16 ; 13 (4) : . [epub] 20221116

Polymer Biointerfaces

. 2020 Apr 02 ; 12 (4) : . [epub] 20200402

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...