Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces

. 2016 Sep 15 ; 17 (9) : . [epub] 20160915

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27649159

Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is.

Zobrazit více v PubMed

Cate A.T., Gaspar C.H., Virtanen H.L.K., Stevens R.S.A., Koldeweij R.B.J., Olkkonen J.T., Rentrop C.H.A., Smolander M.H. Printed electronic switch on flexible substrates using printed microcapsules. J. Mater. Sci. 2014;49:5831–5837. doi: 10.1007/s10853-014-8271-7. DOI

Zhybak M., Beni V., Vagin M.Y., Dempsey E., Turner A.P.F., Korpan Y. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite. Biosens. Bioelectron. 2016;77:505–511. doi: 10.1016/j.bios.2015.10.009. PubMed DOI

Qazi T.H., Rai R., Boccaccini A.R. Tissue engineering of electrically responsive tissues using polyaniline based polymers: A review. Biomaterials. 2014;35:9068–9086. doi: 10.1016/j.biomaterials.2014.07.020. PubMed DOI

Ricotti L., Menciassi A. Bio-hybrid muscle cell-based actuators. Biomed. Microdevices. 2012;14:987–998. doi: 10.1007/s10544-012-9697-9. PubMed DOI

Juarez-Hernandez L.J., Comella N., Pasquardini L., Battistoni S., Vidalino L., Vanzetti L., Caponi S., Dalla Serra M., Iannotta S., Pederzolli C., et al. Bio-hybrid interfaces to study neuromorphic functionalities: New multidisciplinary evidences of cell viability on poly(anyline) (PANI), a semiconductor polymer with memristive properties. Biophys. Chem. 2016;208:40–47. doi: 10.1016/j.bpc.2015.07.008. PubMed DOI

Bidez P.R., Li S.X., MacDiarmid A.G., Venancio E.C., Wei Y., Lelkes P.I. Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J. Biomater. Sci. Polym. Ed. 2006;17:199–212. doi: 10.1163/156856206774879180. PubMed DOI

Wang H., Ji L., Li D., Wang J. Characterization of nanostructure and cell compatibility of polyaniline films with different dopant acids. J. Phys. Chem. B. 2008;112:2671–2677. doi: 10.1021/jp0750957. PubMed DOI

Bober P., Humpolicek P., Pachernik J., Stejskal J., Lindfors T. Conducting polyaniline based cell culture substrate for embryonic stem cells and embryoid bodies. RSC Adv. 2015;5:50328–50335. doi: 10.1039/C5RA07504A. DOI

Prabhakar P.K., Raj S., Anuradha P.R., Sawant S.N., Doble M. Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. Colloids Surf. B Biointerfaces. 2011;86:146–153. doi: 10.1016/j.colsurfb.2011.03.033. PubMed DOI

Yan X., Chen J., Yang J., Xue Q., Miele P. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl. Mater. Interfaces. 2010;2:2521–2529. doi: 10.1021/am100293r. PubMed DOI

Humpolicek P., Kucekova Z., Kasparkova V., Pelkova J., Modic M., Junkar I., Trchova M., Bober P., Stejskal J., Lehocky M. Blood coagulation and platelet adhesion on polyaniline films. Colloids Surf. B Biointerfaces. 2015;133:278–285. doi: 10.1016/j.colsurfb.2015.06.008. PubMed DOI

Sivaraman K.M., Oezkale B., Ergeneman O., Luhmann T., Fortunato G., Zeeshan M.A., Nelson B.J., Pane S. Redox cycling for passive modification of polypyrrole surface properties: Effects on cell adhesion and proliferation. Adv. Healthc. Mater. 2013;2:591–598. doi: 10.1002/adhm.201200282. PubMed DOI

Zhang X., Qi H., Wang S., Feng L., Ji Y., Tao L., Li S., Wei Y. Cellular responses of aniline oligomers: A preliminary study. Toxicol. Res. 2012;1:201–205. doi: 10.1039/c2tx20035j. DOI

Humpolicek P., Radaszkiewicz K.A., Kasparkova V., Stejskal J., Trchova M., Kucekova Z., Vicarova H., Pachernik J., Lehocky M., Minarik A. Stem cell differentiation on conducting polyaniline. RSC Adv. 2015;5:68796–68805. doi: 10.1039/C5RA12218J. DOI

Kasparkova V., Humpolicek P., Stejskal J., Kopecka J., Kucekova Z., Moucka R. Conductivity, impurity profile, and cytotoxicity of solvent-extracted polyaniline. Polym. Adv. Technol. 2016;27:156–161. doi: 10.1002/pat.3611. DOI

Kucekova Z., Humpolicek P., Kasparkova V., Perecko T., Lehocky M., Hauerlandova I., Saha P., Stejskal J. Colloidal polyaniline dispersions: Antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids Surf. B: Biointerfaces. 2014;116:411–417. doi: 10.1016/j.colsurfb.2014.01.027. PubMed DOI

Stejskal J., Hajna M., Kasparkova V., Humpolicek P., Zhigunov A., Trchova M. Purification of a conducting polymer, polyaniline, for biomedical applications. Synth. Met. 2014;195:286–293. doi: 10.1016/j.synthmet.2014.06.020. DOI

Stejskal J., Sapurina I. Polyaniline: Thin films and colloidal dispersions—(IUPAC Technical Report) Pure Appl. Chem. 2005;77:815–826. doi: 10.1351/pac200577050815. DOI

Bayer C.L., Trenchard I.J., Peppas N.A. Analyzing polyaniline-poly (2-acrylamido-2-methylpropane sulfonic acid) biocompatibility with 3T3 fibroblasts. J. Biomater. Sci. Polym. Ed. 2010;21:623–634. doi: 10.1163/156856209X434647. PubMed DOI

Stejskal J., Sapurina I., Prokes J., Zemek J. In-situ polymerized polyaniline films. Synth. Met. 1999;105:195–202. doi: 10.1016/S0379-6779(99)00105-8. DOI

Yoo J.E., Cross J.L., Bucholz T.L., Lee K.S., Espe M.P., Loo Y. Improving the electrical conductivity of polymer acid-doped polyaniline by controlling the template molecular weight. J. Mater. Chem. 2007;17:1268–1275. doi: 10.1039/b618521e. DOI

Liang C., Park A.Y., Guan J. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007;2:329–333. doi: 10.1038/nprot.2007.30. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Dual Crosslinked Collagen/Chitosan Film for Potential Biomedical Applications

. 2019 Dec 14 ; 11 (12) : . [epub] 20191214

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...