Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
27649159
PubMed Central
PMC5037718
DOI
10.3390/ijms17091439
PII: ijms17091439
Knihovny.cz E-resources
- Keywords
- cyto-compatibility, fibroblast, phosphotungstic acid, poly (2-acrylamido-2-methyl-1-propanesulfonic) acid, polyaniline, sulfamic acid,
- MeSH
- Aniline Compounds chemistry pharmacology MeSH
- Biocompatible Materials chemistry pharmacology MeSH
- Cell Adhesion drug effects MeSH
- NIH 3T3 Cells MeSH
- Mice MeSH
- Cell Movement drug effects MeSH
- Surface Properties MeSH
- Cell Proliferation drug effects MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aniline Compounds MeSH
- Biocompatible Materials MeSH
- polyaniline MeSH Browser
Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is.
See more in PubMed
Cate A.T., Gaspar C.H., Virtanen H.L.K., Stevens R.S.A., Koldeweij R.B.J., Olkkonen J.T., Rentrop C.H.A., Smolander M.H. Printed electronic switch on flexible substrates using printed microcapsules. J. Mater. Sci. 2014;49:5831–5837. doi: 10.1007/s10853-014-8271-7. DOI
Zhybak M., Beni V., Vagin M.Y., Dempsey E., Turner A.P.F., Korpan Y. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite. Biosens. Bioelectron. 2016;77:505–511. doi: 10.1016/j.bios.2015.10.009. PubMed DOI
Qazi T.H., Rai R., Boccaccini A.R. Tissue engineering of electrically responsive tissues using polyaniline based polymers: A review. Biomaterials. 2014;35:9068–9086. doi: 10.1016/j.biomaterials.2014.07.020. PubMed DOI
Ricotti L., Menciassi A. Bio-hybrid muscle cell-based actuators. Biomed. Microdevices. 2012;14:987–998. doi: 10.1007/s10544-012-9697-9. PubMed DOI
Juarez-Hernandez L.J., Comella N., Pasquardini L., Battistoni S., Vidalino L., Vanzetti L., Caponi S., Dalla Serra M., Iannotta S., Pederzolli C., et al. Bio-hybrid interfaces to study neuromorphic functionalities: New multidisciplinary evidences of cell viability on poly(anyline) (PANI), a semiconductor polymer with memristive properties. Biophys. Chem. 2016;208:40–47. doi: 10.1016/j.bpc.2015.07.008. PubMed DOI
Bidez P.R., Li S.X., MacDiarmid A.G., Venancio E.C., Wei Y., Lelkes P.I. Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J. Biomater. Sci. Polym. Ed. 2006;17:199–212. doi: 10.1163/156856206774879180. PubMed DOI
Wang H., Ji L., Li D., Wang J. Characterization of nanostructure and cell compatibility of polyaniline films with different dopant acids. J. Phys. Chem. B. 2008;112:2671–2677. doi: 10.1021/jp0750957. PubMed DOI
Bober P., Humpolicek P., Pachernik J., Stejskal J., Lindfors T. Conducting polyaniline based cell culture substrate for embryonic stem cells and embryoid bodies. RSC Adv. 2015;5:50328–50335. doi: 10.1039/C5RA07504A. DOI
Prabhakar P.K., Raj S., Anuradha P.R., Sawant S.N., Doble M. Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. Colloids Surf. B Biointerfaces. 2011;86:146–153. doi: 10.1016/j.colsurfb.2011.03.033. PubMed DOI
Yan X., Chen J., Yang J., Xue Q., Miele P. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl. Mater. Interfaces. 2010;2:2521–2529. doi: 10.1021/am100293r. PubMed DOI
Humpolicek P., Kucekova Z., Kasparkova V., Pelkova J., Modic M., Junkar I., Trchova M., Bober P., Stejskal J., Lehocky M. Blood coagulation and platelet adhesion on polyaniline films. Colloids Surf. B Biointerfaces. 2015;133:278–285. doi: 10.1016/j.colsurfb.2015.06.008. PubMed DOI
Sivaraman K.M., Oezkale B., Ergeneman O., Luhmann T., Fortunato G., Zeeshan M.A., Nelson B.J., Pane S. Redox cycling for passive modification of polypyrrole surface properties: Effects on cell adhesion and proliferation. Adv. Healthc. Mater. 2013;2:591–598. doi: 10.1002/adhm.201200282. PubMed DOI
Zhang X., Qi H., Wang S., Feng L., Ji Y., Tao L., Li S., Wei Y. Cellular responses of aniline oligomers: A preliminary study. Toxicol. Res. 2012;1:201–205. doi: 10.1039/c2tx20035j. DOI
Humpolicek P., Radaszkiewicz K.A., Kasparkova V., Stejskal J., Trchova M., Kucekova Z., Vicarova H., Pachernik J., Lehocky M., Minarik A. Stem cell differentiation on conducting polyaniline. RSC Adv. 2015;5:68796–68805. doi: 10.1039/C5RA12218J. DOI
Kasparkova V., Humpolicek P., Stejskal J., Kopecka J., Kucekova Z., Moucka R. Conductivity, impurity profile, and cytotoxicity of solvent-extracted polyaniline. Polym. Adv. Technol. 2016;27:156–161. doi: 10.1002/pat.3611. DOI
Kucekova Z., Humpolicek P., Kasparkova V., Perecko T., Lehocky M., Hauerlandova I., Saha P., Stejskal J. Colloidal polyaniline dispersions: Antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids Surf. B: Biointerfaces. 2014;116:411–417. doi: 10.1016/j.colsurfb.2014.01.027. PubMed DOI
Stejskal J., Hajna M., Kasparkova V., Humpolicek P., Zhigunov A., Trchova M. Purification of a conducting polymer, polyaniline, for biomedical applications. Synth. Met. 2014;195:286–293. doi: 10.1016/j.synthmet.2014.06.020. DOI
Stejskal J., Sapurina I. Polyaniline: Thin films and colloidal dispersions—(IUPAC Technical Report) Pure Appl. Chem. 2005;77:815–826. doi: 10.1351/pac200577050815. DOI
Bayer C.L., Trenchard I.J., Peppas N.A. Analyzing polyaniline-poly (2-acrylamido-2-methylpropane sulfonic acid) biocompatibility with 3T3 fibroblasts. J. Biomater. Sci. Polym. Ed. 2010;21:623–634. doi: 10.1163/156856209X434647. PubMed DOI
Stejskal J., Sapurina I., Prokes J., Zemek J. In-situ polymerized polyaniline films. Synth. Met. 1999;105:195–202. doi: 10.1016/S0379-6779(99)00105-8. DOI
Yoo J.E., Cross J.L., Bucholz T.L., Lee K.S., Espe M.P., Loo Y. Improving the electrical conductivity of polymer acid-doped polyaniline by controlling the template molecular weight. J. Mater. Chem. 2007;17:1268–1275. doi: 10.1039/b618521e. DOI
Liang C., Park A.Y., Guan J. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007;2:329–333. doi: 10.1038/nprot.2007.30. PubMed DOI