Naïve-like pluripotency to pave the way for saving the northern white rhinoceros from extinction

. 2022 Mar 08 ; 12 (1) : 3100. [epub] 20220308

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35260583
Odkazy

PubMed 35260583
PubMed Central PMC8904600
DOI 10.1038/s41598-022-07059-w
PII: 10.1038/s41598-022-07059-w
Knihovny.cz E-zdroje

The northern white rhinoceros (NWR) is probably the earth's most endangered mammal. To rescue the functionally extinct species, we aim to employ induced pluripotent stem cells (iPSCs) to generate gametes and subsequently embryos in vitro. To elucidate the regulation of pluripotency and differentiation of NWR PSCs, we generated iPSCs from a deceased NWR female using episomal reprogramming, and observed surprising similarities to human PSCs. NWR iPSCs exhibit a broad differentiation potency into the three germ layers and trophoblast, and acquire a naïve-like state of pluripotency, which is pivotal to differentiate PSCs into primordial germ cells (PGCs). Naïve culturing conditions induced a similar expression profile of pluripotency related genes in NWR iPSCs and human ESCs. Furthermore, naïve-like NWR iPSCs displayed increased expression of naïve and PGC marker genes, and a higher integration propensity into developing mouse embryos. As the conversion process was aided by ectopic BCL2 expression, and we observed integration of reprogramming factors, the NWR iPSCs presented here are unsuitable for gamete production. However, the gained insights into the developmental potential of both primed and naïve-like NWR iPSCs are fundamental for in future PGC-specification in order to rescue the species from extinction using cryopreserved somatic cells.

Zobrazit více v PubMed

Ceballos G, Ehrlich PR, Raven PH. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl. Acad. Sci. U.S.A. 2020;117:13596–13602. PubMed PMC

Barnosky AD, et al. Has the Earth’s sixth mass extinction already arrived? Nature. 2011;471:51–57. PubMed

Kolbert E. The Sixth Extinction: An Unnatural History. Picador; 2015. p. 336.

Hikabe O, et al. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature. 2016;539:299–303. PubMed

Saragusty J, et al. Rewinding the process of mammalian extinction. Zoo Biol. 2016;35:280–292. PubMed

Hermes R, et al. First successful artificial insemination with frozen-thawed semen in rhinoceros. Theriogenology. 2009;71:393–399. PubMed

Hermes R, Hildebrandt TB, Göritz F. Cryopreservation in rhinoceros—Setting a new benchmark for sperm cryosurvival. PLoS ONE. 2018;13:e0200154. PubMed PMC

Hildebrandt TB, et al. Artificial insemination in the anoestrous and the postpartum white rhinoceros using GnRH analogue to induce ovulation. Theriogenology. 2007;67:1473–1484. PubMed

Hildebrandt TB, et al. Embryos and embryonic stem cells from the white rhinoceros. Nat. Commun. 2018;9:2589. PubMed PMC

Ben-Nun IF, et al. Induced pluripotent stem cells from highly endangered species. Nat. Methods. 2011;8:829–831. PubMed

Korody ML, et al. Rewinding extinction in the northern white rhinoceros: Genetically diverse induced pluripotent stem cell bank for genetic rescue. Stem Cells Dev. 2021;30:177–189. PubMed PMC

Hayashi K, Galli C, Diecke S, Hildebrandt TB. Artificially produced gametes in mice, humans and other species. Reprod. Fertil. Dev. 2021;33:91. PubMed

Saitou M. Mammalian germ cell development: From mechanism to in vitro reconstitution. Stem Cell Rep. 2021;16:669–680. PubMed PMC

Ware CB. Concise review: Lessons from naïve human pluripotent cells. Stem Cells. 2017;35:35–41. PubMed PMC

Hayashi K, Surani MA. Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro. Development. 2009;136:3549–3556. PubMed PMC

Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146:519–532. PubMed

Diecke S, et al. Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency. Sci. Rep. 2015;5:8081. PubMed PMC

Drukker M, et al. Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells. Nat. Biotechnol. 2012;30:531–542. PubMed PMC

Xu R-H, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 2002;20:1261–1264. PubMed

Okita K, et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods. 2011;8:409–412. PubMed

Wang W, et al. Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc. Natl. Acad. Sci. U.S.A. 2011;108:18283–18288. PubMed PMC

Houck ML, Ryder OA, Váhala J, Kock RA, Oosterhuis JE. Diploid chromosome number and chromosomal variation in the white rhinoceros (Ceratotherium simum) J. Hered. 1994;85:30–34. PubMed

Groves CP, Fernando P, Robovský J. The sixth rhino: A taxonomic re-assessment of the critically endangered northern white rhinoceros. PLoS ONE. 2010;5:e9703. PubMed PMC

Krendl C, et al. GATA2/3-TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency. Proc. Natl. Acad. Sci. U.S.A. 2017;114:E9579–E9588. PubMed PMC

Weinberger L, Ayyash M, Novershtern N, Hanna JH. Dynamic stem cell states: Naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 2016;17:155–169. PubMed

Gafni O, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013;504:282–286. PubMed

Wang J, et al. Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nat. Protoc. 2016;11:327–346. PubMed

Hanna J, et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl. Acad. Sci. U.S.A. 2010;107:9222–9227. PubMed PMC

Ardehali R, et al. Overexpression of BCL2 enhances survival of human embryonic stem cells during stress and obviates the requirement for serum factors. Proc. Natl. Acad. Sci. U.S.A. 2011;108:3282–3287. PubMed PMC

Tunstall T, et al. Evaluating recovery potential of the northern white rhinoceros from cryopreserved somatic cells. Genome Res. 2018;28:780–788. PubMed PMC

Davidson KC, Mason EA, Pera MF. The pluripotent state in mouse and human. Development. 2015;142:3090–3099. PubMed

Bredenkamp N, Stirparo GG, Nichols J, Smith A, Guo G. The cell-surface marker sushi containing domain 2 facilitates establishment of human naive pluripotent stem cells. Stem Cell Rep. 2019;12:1212–1222. PubMed PMC

Festuccia N, Owens N, Navarro P. Esrrb, an estrogen-related receptor involved in early development, pluripotency, and reprogramming. FEBS Lett. 2018;592:852–877. PubMed

WWF . Living Planet Report 2020—Bending the Curve of Biodiversity Loss. WWF; 2020.

Hayashi M, Kawaguchi T, Durcova-Hills G, Imai H. Generation of germ cells from pluripotent stem cells in mammals. Reprod. Med. Biol. 2018;17:107–114. PubMed PMC

Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. PubMed

Trifonov V, Yang F, Ferguson-Smith MA, Robinson TJ. Cross-species chromosome painting in the Perissodactyla: Delimitation of homologous regions in Burchell’s zebra (Equus burchellii) and the white (Ceratotherium simum) and black rhinoceros (Diceros bicornis) Cytogenet. Genome Res. 2003;103:104–110. PubMed

Fryns JP, Van Buggenhout G. Structural chromosome rearrangements in couples with recurrent fetal wastage. Eur. J. Obstet. Gynecol. Reprod. Biol. 1998;81:171–176. PubMed

de Pessôa LVF, Bressan FF, Freude KK. Induced pluripotent stem cells throughout the animal kingdom: Availability and applications. World J. Stem Cells. 2019;11:491–505. PubMed PMC

Masaki H, et al. Inhibition of apoptosis overcomes stage-related compatibility barriers to chimera formation in mouse embryos. Cell Stem Cell. 2016;19:587–592. PubMed

Warrier S, et al. Direct comparison of distinct naive pluripotent states in human embryonic stem cells. Nat. Commun. 2017;8:15055. PubMed PMC

Masaki H, Nakauchi H. Interspecies chimeras for human stem cell research. Development. 2017;144:2544–2547. PubMed

Theunissen TW, et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell. 2016;19:502–515. PubMed PMC

Wu J, et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell. 2017;168:473–486. PubMed PMC

Masaki H, et al. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells. Development. 2015;142:3222–3230. PubMed

Takashima Y, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell. 2014;158:1254–1269. PubMed PMC

Rebuzzini P, Zuccotti M, Garagna S. X-chromosome inactivation during preimplantation development and in pluripotent stem cells. Cytogenet. Genome Res. 2020;160:283–294. PubMed

Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL. Energy metabolism regulates stem cell pluripotency. Front. Cell Dev. Biol. 2020;8:87. PubMed PMC

Guo F, et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell. 2015;161:1437–1452. PubMed

Ardehali H, Bolli R, Losordo DW, editors. Manual of Research Techniques in Cardiovascular Medicine. Wiley; 2014. pp. 110–116.

Chen G, et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods. 2011;8:424–429. PubMed PMC

Chambers SM, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 2009;27:275–280. PubMed PMC

Pak C, et al. Rapid generation of functional and homogeneous excitatory human forebrain neurons using Neurogenin-2 (Ngn2) Protoc. Exch. 2018 doi: 10.1038/protex.2018.082. DOI

Burridge PW, et al. Chemically defined generation of human cardiomyocytes. Nat. Methods. 2014;11:855–860. PubMed PMC

Behringer R. Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor Laboratory Press; 2013. p. 814.

Pruitt KD, Tatusova T, Klimke W, Maglott DR. NCBI reference sequences: Current status, policy and new initiatives. Nucleic Acids Res. 2009;37:D32–D36. PubMed PMC

Yates AD, et al. Ensembl 2020. Nucleic Acids Res. 2020;48:D682–D688. PubMed PMC

Tyner C, et al. The UCSC genome browser database: 2017 update. Nucleic Acids Res. 2017;45:D626–D634. PubMed PMC

Dobin A, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. PubMed PMC

Anders S, Pyl PT, Huber W. HTSeq—A python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. PubMed PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. PubMed PMC

Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. gprofiler2—An R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. F1000Research. 2020;9:709. PubMed PMC

Subramanian A, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 2005;102:15545–15550. PubMed PMC

Mootha VK, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003;34:267–273. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

In vitro fertilization program in white rhinoceros

. 2023 Dec 01 ; 166 (6) : 383-399. [epub] 20231025

Robust induction of primordial germ cells of white rhinoceros on the brink of extinction

. 2022 Dec 09 ; 8 (49) : eabp9683. [epub] 20221209

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace