Naïve-like pluripotency to pave the way for saving the northern white rhinoceros from extinction
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35260583
PubMed Central
PMC8904600
DOI
10.1038/s41598-022-07059-w
PII: 10.1038/s41598-022-07059-w
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace genetika MeSH
- indukované pluripotentní kmenové buňky * MeSH
- myši MeSH
- Perissodactyla genetika MeSH
- zárodečné buňky metabolismus MeSH
- zárodečné listy MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The northern white rhinoceros (NWR) is probably the earth's most endangered mammal. To rescue the functionally extinct species, we aim to employ induced pluripotent stem cells (iPSCs) to generate gametes and subsequently embryos in vitro. To elucidate the regulation of pluripotency and differentiation of NWR PSCs, we generated iPSCs from a deceased NWR female using episomal reprogramming, and observed surprising similarities to human PSCs. NWR iPSCs exhibit a broad differentiation potency into the three germ layers and trophoblast, and acquire a naïve-like state of pluripotency, which is pivotal to differentiate PSCs into primordial germ cells (PGCs). Naïve culturing conditions induced a similar expression profile of pluripotency related genes in NWR iPSCs and human ESCs. Furthermore, naïve-like NWR iPSCs displayed increased expression of naïve and PGC marker genes, and a higher integration propensity into developing mouse embryos. As the conversion process was aided by ectopic BCL2 expression, and we observed integration of reprogramming factors, the NWR iPSCs presented here are unsuitable for gamete production. However, the gained insights into the developmental potential of both primed and naïve-like NWR iPSCs are fundamental for in future PGC-specification in order to rescue the species from extinction using cryopreserved somatic cells.
Faculty of Veterinary Medicine Freie Universität Berlin 14163 Berlin Germany
FEMTransgenic Technologies Charité 13125 Berlin Germany
Fondazione Avantea 26100 Cremona Italy
Induced Pluripotent Stem Cell Core Facility Helmholtz Zentrum München 85764 Neuherberg Germany
Laboratory of Reproductive Technologies Avantea 26100 Cremona Italy
Leibniz Institute for Zoo and Wildlife Research 10315 Berlin Germany
ZOO Dvůr Králové Štefánikova 1029 544 01 Dvůr Králové nad Labem Czech Republic
Zobrazit více v PubMed
Ceballos G, Ehrlich PR, Raven PH. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl. Acad. Sci. U.S.A. 2020;117:13596–13602. PubMed PMC
Barnosky AD, et al. Has the Earth’s sixth mass extinction already arrived? Nature. 2011;471:51–57. PubMed
Kolbert E. The Sixth Extinction: An Unnatural History. Picador; 2015. p. 336.
Hikabe O, et al. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature. 2016;539:299–303. PubMed
Saragusty J, et al. Rewinding the process of mammalian extinction. Zoo Biol. 2016;35:280–292. PubMed
Hermes R, et al. First successful artificial insemination with frozen-thawed semen in rhinoceros. Theriogenology. 2009;71:393–399. PubMed
Hermes R, Hildebrandt TB, Göritz F. Cryopreservation in rhinoceros—Setting a new benchmark for sperm cryosurvival. PLoS ONE. 2018;13:e0200154. PubMed PMC
Hildebrandt TB, et al. Artificial insemination in the anoestrous and the postpartum white rhinoceros using GnRH analogue to induce ovulation. Theriogenology. 2007;67:1473–1484. PubMed
Hildebrandt TB, et al. Embryos and embryonic stem cells from the white rhinoceros. Nat. Commun. 2018;9:2589. PubMed PMC
Ben-Nun IF, et al. Induced pluripotent stem cells from highly endangered species. Nat. Methods. 2011;8:829–831. PubMed
Korody ML, et al. Rewinding extinction in the northern white rhinoceros: Genetically diverse induced pluripotent stem cell bank for genetic rescue. Stem Cells Dev. 2021;30:177–189. PubMed PMC
Hayashi K, Galli C, Diecke S, Hildebrandt TB. Artificially produced gametes in mice, humans and other species. Reprod. Fertil. Dev. 2021;33:91. PubMed
Saitou M. Mammalian germ cell development: From mechanism to in vitro reconstitution. Stem Cell Rep. 2021;16:669–680. PubMed PMC
Ware CB. Concise review: Lessons from naïve human pluripotent cells. Stem Cells. 2017;35:35–41. PubMed PMC
Hayashi K, Surani MA. Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro. Development. 2009;136:3549–3556. PubMed PMC
Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146:519–532. PubMed
Diecke S, et al. Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency. Sci. Rep. 2015;5:8081. PubMed PMC
Drukker M, et al. Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells. Nat. Biotechnol. 2012;30:531–542. PubMed PMC
Xu R-H, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 2002;20:1261–1264. PubMed
Okita K, et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods. 2011;8:409–412. PubMed
Wang W, et al. Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc. Natl. Acad. Sci. U.S.A. 2011;108:18283–18288. PubMed PMC
Houck ML, Ryder OA, Váhala J, Kock RA, Oosterhuis JE. Diploid chromosome number and chromosomal variation in the white rhinoceros (Ceratotherium simum) J. Hered. 1994;85:30–34. PubMed
Groves CP, Fernando P, Robovský J. The sixth rhino: A taxonomic re-assessment of the critically endangered northern white rhinoceros. PLoS ONE. 2010;5:e9703. PubMed PMC
Krendl C, et al. GATA2/3-TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency. Proc. Natl. Acad. Sci. U.S.A. 2017;114:E9579–E9588. PubMed PMC
Weinberger L, Ayyash M, Novershtern N, Hanna JH. Dynamic stem cell states: Naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 2016;17:155–169. PubMed
Gafni O, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013;504:282–286. PubMed
Wang J, et al. Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nat. Protoc. 2016;11:327–346. PubMed
Hanna J, et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl. Acad. Sci. U.S.A. 2010;107:9222–9227. PubMed PMC
Ardehali R, et al. Overexpression of BCL2 enhances survival of human embryonic stem cells during stress and obviates the requirement for serum factors. Proc. Natl. Acad. Sci. U.S.A. 2011;108:3282–3287. PubMed PMC
Tunstall T, et al. Evaluating recovery potential of the northern white rhinoceros from cryopreserved somatic cells. Genome Res. 2018;28:780–788. PubMed PMC
Davidson KC, Mason EA, Pera MF. The pluripotent state in mouse and human. Development. 2015;142:3090–3099. PubMed
Bredenkamp N, Stirparo GG, Nichols J, Smith A, Guo G. The cell-surface marker sushi containing domain 2 facilitates establishment of human naive pluripotent stem cells. Stem Cell Rep. 2019;12:1212–1222. PubMed PMC
Festuccia N, Owens N, Navarro P. Esrrb, an estrogen-related receptor involved in early development, pluripotency, and reprogramming. FEBS Lett. 2018;592:852–877. PubMed
WWF . Living Planet Report 2020—Bending the Curve of Biodiversity Loss. WWF; 2020.
Hayashi M, Kawaguchi T, Durcova-Hills G, Imai H. Generation of germ cells from pluripotent stem cells in mammals. Reprod. Med. Biol. 2018;17:107–114. PubMed PMC
Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. PubMed
Trifonov V, Yang F, Ferguson-Smith MA, Robinson TJ. Cross-species chromosome painting in the Perissodactyla: Delimitation of homologous regions in Burchell’s zebra (Equus burchellii) and the white (Ceratotherium simum) and black rhinoceros (Diceros bicornis) Cytogenet. Genome Res. 2003;103:104–110. PubMed
Fryns JP, Van Buggenhout G. Structural chromosome rearrangements in couples with recurrent fetal wastage. Eur. J. Obstet. Gynecol. Reprod. Biol. 1998;81:171–176. PubMed
de Pessôa LVF, Bressan FF, Freude KK. Induced pluripotent stem cells throughout the animal kingdom: Availability and applications. World J. Stem Cells. 2019;11:491–505. PubMed PMC
Masaki H, et al. Inhibition of apoptosis overcomes stage-related compatibility barriers to chimera formation in mouse embryos. Cell Stem Cell. 2016;19:587–592. PubMed
Warrier S, et al. Direct comparison of distinct naive pluripotent states in human embryonic stem cells. Nat. Commun. 2017;8:15055. PubMed PMC
Masaki H, Nakauchi H. Interspecies chimeras for human stem cell research. Development. 2017;144:2544–2547. PubMed
Theunissen TW, et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell. 2016;19:502–515. PubMed PMC
Wu J, et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell. 2017;168:473–486. PubMed PMC
Masaki H, et al. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells. Development. 2015;142:3222–3230. PubMed
Takashima Y, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell. 2014;158:1254–1269. PubMed PMC
Rebuzzini P, Zuccotti M, Garagna S. X-chromosome inactivation during preimplantation development and in pluripotent stem cells. Cytogenet. Genome Res. 2020;160:283–294. PubMed
Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL. Energy metabolism regulates stem cell pluripotency. Front. Cell Dev. Biol. 2020;8:87. PubMed PMC
Guo F, et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell. 2015;161:1437–1452. PubMed
Ardehali H, Bolli R, Losordo DW, editors. Manual of Research Techniques in Cardiovascular Medicine. Wiley; 2014. pp. 110–116.
Chen G, et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods. 2011;8:424–429. PubMed PMC
Chambers SM, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 2009;27:275–280. PubMed PMC
Pak C, et al. Rapid generation of functional and homogeneous excitatory human forebrain neurons using Neurogenin-2 (Ngn2) Protoc. Exch. 2018 doi: 10.1038/protex.2018.082. DOI
Burridge PW, et al. Chemically defined generation of human cardiomyocytes. Nat. Methods. 2014;11:855–860. PubMed PMC
Behringer R. Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor Laboratory Press; 2013. p. 814.
Pruitt KD, Tatusova T, Klimke W, Maglott DR. NCBI reference sequences: Current status, policy and new initiatives. Nucleic Acids Res. 2009;37:D32–D36. PubMed PMC
Yates AD, et al. Ensembl 2020. Nucleic Acids Res. 2020;48:D682–D688. PubMed PMC
Tyner C, et al. The UCSC genome browser database: 2017 update. Nucleic Acids Res. 2017;45:D626–D634. PubMed PMC
Dobin A, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. PubMed PMC
Anders S, Pyl PT, Huber W. HTSeq—A python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. PubMed PMC
Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. gprofiler2—An R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. F1000Research. 2020;9:709. PubMed PMC
Subramanian A, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 2005;102:15545–15550. PubMed PMC
Mootha VK, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003;34:267–273. PubMed
In vitro fertilization program in white rhinoceros
Robust induction of primordial germ cells of white rhinoceros on the brink of extinction