Ticks are important vectors of various microorganisms, including bacteria. In this study, we examined Hyalomma aegyptium ticks collected from 240 spur-thighed tortoises Testudo graeca at 42 localities in the Mediterranean and Middle East and analysed them for the presence of bacteria of the genera Anaplasma, Borrelia, Coxiella, and Rickettsia. Altogether, 576 out of 928 analysed ticks (62.1%) were positive for at least one of the tested bacteria. The highest prevalence in individual ticks was found for Borrelia turcica (43.6%), followed by Rickettsia (12.3%) and Anaplasma (6.1%). No sample was positive for Coxiella burnetii. Among Rickettsia, we detected two species, Rickettsia africae and Rickettsia aeschlimannii, and also other unspecified Rickettsia. Anaplasma (100% identity with A. phagocytophilum) was detected at 15 (35%) out of 42 studied localities, any of Rickettsia at 28 (67%), and B. turcica at 32 (76%) localities. The geographic distribution of the studied microorganisms varied, with none of them detected in Syria, and only Rickettsia spp. detected in Morocco. Sequence analysis revealed substantial genetic variability in all detected agents, with the most variable (36 new haplotypes) being glpQ gene used as a marker for B. turcica. We also analysed the prevalence of various co-infections among studied ticks, with the mean number of co-infected ticks per tortoise increased with the number of ticks per tortoise. However, the frequencies of co-infected ticks do not indicate the presence of antagonistic or synergistic facilitative interactions between the agents. According to our data, we could expect that the eco-epidemiological importance of H. aegyptium does not stem from their tortoise hosts but rather from the low host specificity of its larvae and nymphs, feeding on a wider spectrum of reptilian, avian, and mammalian hosts.
- MeSH
- Anaplasma * isolation & purification MeSH
- Borrelia isolation & purification MeSH
- Coxiella isolation & purification genetics MeSH
- Tick Infestations veterinary epidemiology parasitology MeSH
- Ixodidae * microbiology growth & development MeSH
- Rickettsia * isolation & purification MeSH
- Turtles * microbiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Middle East MeSH
- Mediterranean Region MeSH
Cíl: Zjistit výskyt potenciálně patogenních druhů babesií pro člověka v klíšťatech a v krvi psů a jelenů ve vybraných regionech České republiky. Prevalenci Babesia spp. v klíšťatech porovnat s výskytem jiných patogenů přenášených klíšťaty jako Borrelia spp., Anaplasma spp., Rickettsia spp. Materiál a metody: Vzorky klíšťat byly jednotlivě homogenizovány, ze vzorků klíšťat a krve živočichů provedena izolace DNA. Detekce Babesia spp. byla stanovena metodou PCR 18S rRNA genu a sekvenační analýzou PCR produktů určeny jednotlivé druhy babesií. Výsledky: V letech 2014–2016 byla analyzována klíšťata a krev psů a jelenů na různých místech České republiky. Ze souboru 675 klíšťat Ixodes ricinus dosahovala pozitivita na přítomnost Babesia spp. hodnot od 0,0 do 3,3 %. Sekvenační analýzou byly v klíšťatech identifikovány druhy Babesia venatorum, Babesia microti (patogenní druhy pro člověka) a druh Babesia capreoli. Prevalence Babesia spp. v klíšťatech byla v porovnání s výskytem jiných patogenů jako Borrelia burgdorferi s. l. (29,3 %), Anaplasma phagocytophilum (4,9 %) nižší a srovnatelná s Rickettsia spp. (1,6 %). U třetiny pozitivních klíšťat na babesie byla zjištěna koinfekce s Borrelia burgdorferi s. l. (B. venatorum – Borrelia garinii, Borrelia afzelii a B. microti – B. afzelii). Ze 109 vzorků krve psů bylo 3,7 % pozitivních na Babesia spp. s výskytem druhů Babesia gibsoni a Babesia vulpes. Z 50 vzorků krve jelenů z přírodního ekosystému dosahovala pozitivita 4,0 %. Identifikován byl druh Babesia divergens, nejvíce patogenní druh Babesia spp. pro člověka. Z 80 vzorků krve jelenů chovaných na farmách bylo pozitivních 5,0 % s výskytem druhu Babesia odocoilei. Nukleotidové sekvence babesií způsobujících humánní babesiózu byly zaslány do genové banky a přijaty pod čísly ON892053 (B. venatorum), ON892061 (B. microti), ON892067 (B. divergens). Závěr: Metodou PCR 18S rRNA genu a sekvenací amplikonů byly na území České republiky detekovány tři druhy babesií patogenních pro člověka: B. divergens, B. venatorum, B. microti. Výskyt těchto druhů babesií znamená potenciální riziko onemocnění babesiózou, zejména pro asplenické a imunokompromitované pacienty. Zjištěné koinfekce s Borrelia burgdorferi s. l. mohou být příčinou komplikovaného průběhu onemocnění.
Aim: To determine the occurrence of species of Babesia potentially pathogenic for humans in ticks and in the blood of dogs and deer in selected regions of the Czech Republic. To compare the prevalence of Babesia spp. in ticks with that of other tick-borne pathogens, such as Borrelia spp., Anaplasma spp., and Rickettsia spp. Material and Methods: Tick samples were individually homogenized. DNA was isolated from tick samples and animal blood. The detection of Babesia spp. was based on PCR of the 18S rRNA gene, and the identification to the species level was done by sequencing analysis of the PCR products. Results: In 2014–2016, ticks and blood of dogs and deer collected in various areas of the Czech Republic were analyzed. In a set of 675 Ixodes ricinus ticks, the positivity rate for Babesia spp. varied from 0.0 to 3.3 %. The species Babesia venatorum, Babesia microti (both pathogenic for humans), and Babesia capreoli were identified in ticks by sequencing analysis. The prevalence of Babesia spp. in ticks compared to that of other pathogens such as Borrelia burgdorferi s. l. (29.3 %) or Anaplasma phagocytophilum (4.9 %) was lower and comparable to that of Rickettsia spp. (1.6 %). Co-infection with Borrelia burgdorferi s.l (B. venatorum – Borrelia garinii, Borrelia afzelii, and B. microti – B. afzelii) was found in a third of Babesia spp. positive ticks. Out of 109 dog blood samples, 3.7 % were positive for Babesia spp., specifically Babesia gibsoni and Babesia vulpes. Of 50 blood samples of wild deer from the natural ecosystem, the positivity rate reached 4.0 %. The species Babesia divergens, a major human pathogen, was identified. Out of 80 blood samples from farmed deer, 5.0 % were positive for the species Babesia odocoilei. Nucleotide sequences of the agents causing human babesiosis were deposited in the gene bank under accession numbers ON892053 (B. venatorum), ON892061 (B. microti), and ON892067 (B. divergens). Conclusions: Using PCR of the 18S rRNA gene and amplicon sequencing, three species of Babesia causing human babesiosis were detected in the Czech Republic: B. divergens, B. venatorum, and B. microti. Babesia spp. pathogenic for humans pose a potential risk especially in asplenic and immunocompromised patients. The detected co-infections with Borrelia spp. can be the cause of a complicated course of the disease.
- MeSH
- Babesia microbiology MeSH
- Babesiosis * epidemiology blood transmission MeSH
- Borrelia burgdorferi MeSH
- Molecular Diagnostic Techniques methods MeSH
- Ticks * microbiology MeSH
- Coinfection diagnosis transmission MeSH
- Blood microbiology MeSH
- Humans MeSH
- Tick-Borne Diseases epidemiology transmission prevention & control MeSH
- Polymerase Chain Reaction methods MeSH
- Dogs * microbiology MeSH
- Deer * blood microbiology MeSH
- Check Tag
- Humans MeSH
- Dogs * microbiology MeSH
- Geographicals
- Czech Republic MeSH
The brown dog tick, Rhipicephalus sanguineus is a complex of tick species with an unsettled species concept. In Europe, R. sanguineus is considered mainly a Mediterranean tick with sporadic findings in central and northern Europe. R. sanguineus is known as a vector of a range of pathogens of medical and veterinary importance, most of which not yet reported as autochthonous in Hungary. A total of 1839 ticks collected by veterinarians from dogs and cats were obtained in Hungary. The study aims at precise determination of ticks identified as R. sanguineus and detection of pathogens in collected ticks. All ticks were morphologically determined and 169 individuals were identified as R. sanguineus. A subset of 15 ticks was selected for molecular analysis (16S rDNA, 12S rDNA, COI). Phylogenetic analyses invariably placed sequences of all three markers into a single haplotype identified as R. sanguineus sensu stricto. All 169 brown dog ticks were tested for the presence of A. platys, E. canis, R. conorii, B. vogeli and H. canis. None of the investigated ticks was positive for the screened pathogens, though A. phagocytophilum sequence was detected in a single tick.
- MeSH
- Anaplasma * MeSH
- Ehrlichia canis isolation & purification genetics MeSH
- Phylogeny * MeSH
- Tick Infestations * veterinary parasitology MeSH
- Cats parasitology MeSH
- Tick-Borne Diseases veterinary microbiology parasitology MeSH
- Dog Diseases * parasitology diagnosis MeSH
- Dogs MeSH
- Rhipicephalus sanguineus * microbiology MeSH
- Rickettsia conorii isolation & purification genetics MeSH
- RNA, Ribosomal, 16S analysis genetics MeSH
- RNA, Ribosomal * MeSH
- Animals MeSH
- Check Tag
- Cats parasitology MeSH
- Male MeSH
- Dogs MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Hungary MeSH
Článek obecně pojednává o onemocnění anaplazmózou a ostatními vektorovými onemocněními a prezentuje relativně vzácně se vyskytující myokarditidu psa vzniklou jako důsledek proběhlé anaplazmózy. V kazuistice popisujeme případ anaplazmou vyvolané myokarditidy u 4,5 roku starého křížence pinče s poruchou rytmu typu atrioventrikulární (AV) blokády I. a II. stupně s junkčním rytmem a jeho klinickými souvislostmi. Porucha rytmu byla reverzibilní, po nasazené terapii došlo k normalizaci srdeční akce.
The article generally deals with anaplasmosis and other vector-borne diseases and presents the relatively rare canine myocarditis that arose as a result of anaplasmosis. In the case report, we describe a case of anaplasma-induced myocarditis in a 4.5 year old Pinscher crossbreed with a rhythm disorder of AV block I. and II. degree with junctional rhythm and its clinical consequences. The rhythm disorder was reversible, after the therapy, the heart action has been normalized.
- MeSH
- Anaplasmosis * diagnosis complications therapy MeSH
- Echocardiography MeSH
- Myocarditis diagnosis drug therapy veterinary MeSH
- Dog Diseases * diagnosis therapy MeSH
- Dogs MeSH
- Serologic Tests MeSH
- Animals MeSH
- Check Tag
- Dogs MeSH
- Animals MeSH
- Publication type
- Case Reports MeSH
- Review MeSH
Cíl práce: Cílem této publikace je prezentace výsledků monitoringu aktivity a pozitivity klíšťat Ixodes ricinus v lokalitě brněnského aglomerace lesoparku Brno-Pisárky na nebezpečné patogenní mikroorganismy. Sledovanými patogeny jsou Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Coxiella burnetii, Erhlichia chaffensis a Francisella tularensis. Současně jsou sledovány faktory (zejména teplota), které by mohly ovlivnit aktivitu klíšťat na této lokalitě. Materiál a metody: Klíšťata byla na této lokalitě odchytávána pomocí metody vlajkování. Metodou PCR (polymerázová řetězová reakce) a následnou gelovou elektroforézou byla určována pozitivita jedinců. Výsledky: V období od března do listopadu 2021 bylo na této lokalitě nasbíráno 563 jedinců, s největším zastoupením nymf (85 %). Pozitivita na patogen Bbsl byla 5,6 %, na patogen Anaplasma phagocytophilum 2,4 %. Výskyt Coxiella burnetii, Ehrlichia chaffensis a Francisella tularensis nebyl na této lokalitě potvrzen. Závěr: Na lokalitě byla prokázána promořenost patogeny Bbsl a Anaplasma phagocytophilum. Ve srovnání s ostatními brněnskými lokalitami je však pozitivita na území Brna-Pisárek nižší.
x
- MeSH
- DNA isolation & purification MeSH
- Ixodes * pathogenicity MeSH
- Statistics as Topic MeSH
- Temperature MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Anaplasma phagocytophilum is the causative agent of tick-borne fever (TBF) and human granulocytic anaplasmosis (HGA) and is currently considered an emerging disease in the USA, Europe, and Asia. The increased prevalence of A. phagocytophilum as a human pathogen requires the detailed characterization of human isolates and the implementation of appropriate animal models. In this study, we demonstrated that the dynamics of infection with the human isolate of A. phagocytophilum NY-18 was variable in three different strains of mice (SCID, C3H/HeN, BALB/c). We further evaluated the ability of Ixodes ricinus to acquire and transmit A. phagocytophilum NY-18 and compared it with Ixodes scapularis. Larvae of both tick species effectively acquired the pathogen while feeding on infected mice. The infection rates then decreased during the development to nymphs. Interestingly, molted I. ricinus nymphs were unable to transmit the pathogen to naïve mice, which contrasted with I. scapularis. The results of our study suggest that I. ricinus is not a competent vector for the American human Anaplasma isolate. Further studies are needed to establish reliable transmission models for I. ricinus and European human isolate(s) of A. phagocytophilum.
- Publication type
- Journal Article MeSH
The Tomsk region located in the south of Western Siberia is one of the most high-risk areas for tick-borne diseases due to elevated incidence of tick-borne encephalitis and Lyme disease in humans. Wild birds may be considered as one of the reservoirs for tick-borne pathogens and hosts for infected ticks. A high mobility of wild birds leads to unpredictable possibilities for the dissemination of tick-borne pathogens into new geographical regions. The primary goal of this study was to evaluate the prevalence of tick-borne pathogens in wild birds and ticks that feed on them as well as to determine the role of different species of birds in maintaining the tick-borne infectious foci. We analysed the samples of 443 wild birds (60 species) and 378 ticks belonging to the genus Ixodes Latraille, 1795 collected from the wild birds, for detecting occurrence of eight tick-borne pathogens, the namely tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and species of Borrelia, Rickettsia, Ehrlichia, Anaplasma, Bartonella and Babesia Starcovici, 1893, using RT-PCR/or PCR and enzyme immunoassay. One or more tick-borne infection markers were detected in 43 species of birds. All markers were detected in samples collected from fieldfare Turdus pilaris Linnaeus, Blyth's reed warbler Acrocephalus dumetorum Blyth, common redstart Phoenicurus phoenicurus (Linnaeus), and common chaffinch Fringilla coelebs Linnaeus. Although all pathogens have been identified in birds and ticks, we found that in the majority of cases (75.5 %), there were mismatches of pathogens in birds and ticks collected from them. Wild birds and their ticks may play an extremely important role in the dissemination of tick-borne pathogens into different geographical regions.
- MeSH
- Borrelia * MeSH
- Ixodes * MeSH
- Humans MeSH
- Tick-Borne Diseases * epidemiology veterinary MeSH
- Birds MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Siberia MeSH
The hypothesized importance of coinfections in the pathogenesis of post-treatment Lyme disease syndrome (PTLDS) leads to the use of combined, ongoing antimicrobial treatment in many cases despite the absence of symptoms typical of the presence of infection with specific pathogens. Serum samples from 103 patients with suspected post-treatment Lyme disease syndrome were tested for the presence of antibodies to the major tick-borne pathogens Anaplasma phagocytophilum, Bartonella henselae/Bartonella quinatana, and Babesia microti. Although the presence of anti-Anaplasma antibodies was detected in 12.6% of the samples and anti-Bartonella antibodies in 9.7% of the samples, the presence of antibodies against both pathogens in the same samples or anti-Babesia antibodies in the selected group of patients could not be confirmed. However, we were able to detect autoantibodies, mostly antinuclear, in 11.6% of the patients studied. Our results are in good agreement with previously published studies showing the presence of a wide spectrum of autoantibodies in some patients with complicated forms of Lyme disease and post-treatment Lyme disease syndrome, but they do not reveal a significant influence of co-infections on the development of PTLDS in the studied group of patients.
- Publication type
- Journal Article MeSH
The Gram-negative, obligate intracellular tick-transmitted pathogen Anaplasma phagocytophilum can cause acute febrile diseases in humans and domestic animals. The expansion of the tick Ixodes ricinus (Linnaeus, 1758) in northern Europe due to climate change is of serious concern for animal and human health. The aim of the present study was to investigate the impact of A. phagocytophilum infection in moose Alces alces (Linnaeus) calves by evaluating the carcass weights of infected and non-infected animals and examining animal tissues samples for co-infections with either species of Babesia Starcovici, 1893 or bacteria of the genus Bartonella. The carcasses of 68 free-ranging moose calves were weighed by hunters during the hunting seasons from 2014 to 2017 in two regions in southern Norway and spleen samples were collected. Anaplasma phagocytophilum was detected in moose sampled from locations infected with ticks with a prevalence of 82% (n = 46). The carcass weights of A. phagocytophilum-infected calves (n = 46) and non-infected (n = 22) calves were compared. Although the average weight of infected calves (45.6 kg) was lower than that of non-infected calves (46.5 kg), the difference was not statistically significant. Three different variants of the bacterium 16S rRNA gene were identified. The average weight of animals infected with variant I was 49.9 kg, whereas that of animals infected with variant III was 42.0 kg, but the difference was not statistically significant (p = 0.077). Co-infections of A. phagocytophilum with Bartonella spp. or with Babesia spp. were found in 20 and two calves, respectively. A triple infection was found in two calves. Sequence analysis of the 18S rRNA gene of Babesia-positive samples revealed the presence of Babesia cf. odocoilei (Emerson et Wright, 1970). Strains of Bartonella closely related to Bartonella bovis (Bermond, Boulouis, Heller, Laere, Monteil, Chomel, Sander, Dehio et Piemont, 2002) were identified based on phylogenetic analysis of the gltA and rpoB genes. The loss of body mass in moose calves in the tick-infected site was probably influenced by multiple factors.
- MeSH
- Anaplasma phagocytophilum * classification genetics isolation & purification MeSH
- Babesia genetics MeSH
- Bartonella genetics MeSH
- DNA, Bacterial chemistry genetics isolation & purification MeSH
- Ehrlichiosis complications epidemiology pathology veterinary MeSH
- Phylogeny MeSH
- Oligonucleotides chemistry MeSH
- Polymerase Chain Reaction veterinary MeSH
- Base Sequence MeSH
- Spleen microbiology pathology MeSH
- Body Weight MeSH
- Deer * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Norway MeSH
Studies of tick-borne diseases (TBDs) in Europe focus on pathogens with principal medical importance (e.g. Lyme disease and tick-borne encephalitis), but we have limited epidemiological information on the neglected pathogens, such as the members of the genera Anaplasma, Rickettsia, Babesia and Candidatus Neoehrlichia mikurensis. Here, we integrated an extensive field sampling, laboratory analysis and GIS models to provide first publicly available information on pathogen diversity, prevalence and infection risk for four overlooked zoonotic TBDs in the Czech Republic. In addition, we assessed the effect of landscape variables on the abundance of questing ticks at different spatial scales and examined whether pathogen prevalence increased with tick density. Our data from 13,340 ticks collected in 142 municipalities showed that A. phagocytophilum (MIR = 3.5%) and Ca. Neoehrlichia mikurensis (MIR = 4.0%) pose geographically uneven risks with localized hotspots, while Rickettsia (MIR = 4.9%) and Babesia (MIR = 1.1%) had relatively homogeneous spatial distribution. Landscape variables had significant effect on tick abundance up to the scale of 1 km around the sampling sites. Questing ticks responded positively to landscape diversity and configuration, especially to forest patch density that strongly correlates with the amount of woodland-grassland ecotones. For all four pathogens, we found higher prevalence in places with higher densities of ticks, confirming the hypothesis that tick abundance amplifies the risk of TB infection. Our findings highlight the importance of landscape parameters for tick vectors, likely due to their effect on small vertebrates as reservoir hosts. Future studies should explicitly investigate the combined effect of landscape parameters and the composition and population dynamics of hosts on the host-vector-pathogen system.
- MeSH
- Anaplasmataceae isolation & purification MeSH
- Babesia isolation & purification MeSH
- Ixodidae microbiology parasitology MeSH
- Rickettsia isolation & purification MeSH
- Environment MeSH
- Zoonoses * microbiology parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH